
RediStart™ Solid State Starter MX³Control

MVRMX & MVRXE Models 1500 to 7200VAC

User Manual

890034-03-00

Motor Starter Card Set: BIPC-450100-01-01 Software Version 1: 810023-02-01 Software Version 2: 810024-01-01 Gate Driver Card: 300047-01 Rev. 13

© 2006 Benshaw Inc.

Benshaw retains the right to change specifications and illustrations in text without prior notification. The contents of this document may not be copied without the explicit permission of Benshaw.

Important Reader Notice

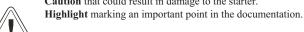
Congratulations on the purchase of your new Benshaw RediStart MVRMX³ Solid State Starter. This manual contains the information to install and program the MVRMX³ Solid State Starter.

This manual may not cover all of the applications for the RediStart MVRMX³. Also, it may not provide information on every possible contingency concerning installation, programming, operation, or maintenance specific to the RediStart MVRMX³ Series Starters.

The content of this manual will not modify any prior agreement, commitment or relationship between the customer and Benshaw. The sales contract contains the entire obligation of Benshaw. The warranty enclosed within the contract between the parties is the only warranty that Benshaw will recognize and any statements contained herein do not create new warranties or modify the existing warranty in any way.

Any electrical or mechanical modifications to Benshaw products without prior written consent of Benshaw will void all warranties and may also void cUL listing or other safety certifications, unauthorized modifications may also result in product damage operation malfunctions or personal injury.

Incorrect handling of the starter may result with an unexpected fault or damage to the starter. For best results on operating the RediStart MX³ starter, carefully read this manual and all warning labels attached to the starter before installation and operation. Keep this manual on hand for


Do not attempt to install, operate, maintain or inspect the starter until you have thoroughly read this manual and related documents carefully and can use the equipment correctly.

Do not use the starter until you have a full knowledge of the equipment, safety procedures and instructions.

This instruction manual classifies safety instruction levels under "WARNING" and "CAUTION".

Electrical Hazard that could result in injury or death.

Caution that could result in damage to the starter.

Please follow the instructions of both safety levels as they are important to personal safety.

High Voltage

Motor control equipment and electronic controllers are connected to hazardous line voltages. When servicing starters and electronic controllers, there may be exposed components with housings or protrusions at or above line potential. Extreme care should be taken to protect against shock.

Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power before checking controllers or performing maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on electronic controllers or rotating machinery.

TRADEMARK NOTICE

BENSHAW are registered trademarks of Benshaw Incorporated. UL is a trademark of Underwriters Laboratories, Incorporated.

Safety Precautions

Electric Shock Prevention

- While power is on or soft starter is running, do not open the front cover. You may get an electrical shock.
- This soft starter contains high voltage which can cause electric shock resulting in personal injury or loss of life.
- Be sure all AC power is removed from the soft starter before servicing.
- Do not connect or disconnect the wires to or from soft starter when power is applied.
- Make sure ground connection is in place.
- · Always install the soft starter before wiring. Otherwise, you may get an electrical shock or be injured.
- Operate the switches with dry hands to prevent an electrical shock.
- · Risk of Electric Shock More than one disconnect switch may be required to de-energize the equipment before servicing.

Injury Prevention

- Service only by qualified personnel.
- Make sure power-up restart is off to prevent any unexpected operation of the motor.
- Make certain proper shield installation is in place.
- Apply only the voltage that is specified in this manual to the terminals to prevent damage.

Transportation and Installation

- Use proper lifting gear when carrying products, to prevent injury.
- Make certain that the installation position and materials can withstand the weight of the soft starter. Refer to the installation information in this manual for correct installation.
- If parts are missing, or soft starter is damaged, do not operate the RediStart MVRMX³.
- Do not stand or rest heavy objects on the soft starter, as damage to the soft starter may result.
- Do not subject the soft starter to impact or dropping.
- Make certain to prevent screws, wire fragments, conductive bodies, oil or other flammable substances from entering the soft starter.

Trial Run

• Check all parameters, and ensure that the application will not be damaged by a sudden start-up.

Emergency Stop

• To prevent the machine and equipment from hazardous conditions if the soft starter fails, provide a safety backup such as an emergency brake.

Disposing of the RediStart MVRMX³

• Never dispose of electrical components via incineration. Contact your state environmental agency for details on disposal of electrical components and packaging in your area.

i

Table of Contents

1	INTRODUCTION	2
2	TECHNICAL SPECIFICATIONS	. 8
	2.1 General Information	. 8
	2.2 Electrical Ratings 2.2.1 Terminal Points and Functions 2.2.2 Measurements and Accuracies 2.2.3 List of Motor Protection Features 2.2.4 Solid State Motor Overload 2.2.5 CT Ratios 2.2.6 Optional RTD Module Specifications 2.2.7 Optional Zero Sequence Ground Fault CT.	8 10 10 11 12 12
	2.3 Sample RediStart MVRMX ³ Unit	
	2.4 Environmental Conditions	. 15
	2.5 Altitude Derating	. 15
	2.6 Real Time Clock	
	2.7 Approvals	
	2.8 Certificate of Compliance	. 15
3	INSTALLATION	18
	3.1 Before You Start	18
	3.2 Installation Considerations 3.2.1 Site Preparation. 3.2.2 EMC Installation Guidelines 3.2.3 R-Rated Motor Starter Fuses 3.2.4 Use of Electro-Mechanical Brakes 3.2.5 Reversing Contactor 3.2.6 Use of Power Factor Capacitors.	19 19 19 19 19
	3.3 Mounting Considerations	
	3.4 Wiring Considerations 3.4.1 Wiring Practices 3.4.2 Considerations for Control and Power Wiring 3.4.3 Considerations for Signal Wiring. 3.4.4 Meggering a Motor. 3.4.5 High Pot Testing.	. 21 21 . 21 21 21
	3.5 Typical Wiring Schematics	. 22

	3.6 Power Wiring 3.6.1 Recommended Wire Gauges 3.6.2 Power Wire Connections 3.6.3 Motor Lead Length. 3.6.4 Compression Lugs 3.6.5 Torque Requirements for Power Wiring Terminations.	2424242425
	3.7 Current Transformers	26 26 26
	3.8 MVRMX ³ Control Card Layout	28
	3.9 MVRMX ³ I/O Card Layout	29
	3.10 MVRMX ³ Terminal Block Layout	30
	3.11 Control Wiring . 3.11.1 Control Power . 3.11.2 Output Relays . 3.11.3 Digital Input . 3.11.4 Analog Input . 3.11.5 Analog Output . 3.11.6 SW1 DIP Switch . 3.11.7 Motor PTC . 3.11.8 RTD Module Connector	31 32 33 33 33 34
	3.12 Remote LCD Keypad/Display	35 36
		37 37 37 37 38
4 KE	YPAD OPERATION	40
	4.1 Introduction	40
	4.2 Description of the LEDs on the Keypad	40
	4.3 Description of the Keys on the Remote LCD Keypad	41
	4.4 Alphanumeric Display 4.4.1 Power Up Screen 4.4.2 Operate Screen 4.4.3 Parameter Group Screens 4.4.4 Meter Pages 4.4.5 Fault Log Screen 4.4.6 Fault Screen 4.4.7 Event Recorder 4.4.8 Lockout Screen 4.4.9 Alarm Screen	42 43 44 45 45 45 46
	4.5 Procedure for Setting Data	
	O	

	4.6 Jump Code	48
	4.7 Restoring Factory Parameter Settings	48
	4.8 Resetting a Fault	48
	4.9 Emergency Overload Reset	
	4.10 LED Display	
	4.10 LED Display	40
5	PARAMETER GROUPS	50
	5.1 Introduction	50
	5.2 LCD Display Parameters	50
	5.2.1 Quick Start Group	
	5.2.2 Control Function Group	
	5.2.3 Protection Group	
	5.2.4 I/O Group	
	5.2.5 RTD Group	
	5.2.6 Function Group	
	5.2.7 Fault Group	
	5.2.8 Event Log Group	56
6	PARAMETER DESCRIPTION	58
	6.1 Parameter Descriptions	58
_		
7	THEORY OF OPERATION	
	7.1 Solid State Motor Overload Protection	114
	7.1.1 Overview	114
	7.1.2 Setting Up The MX ³ Motor Overload	
	7.1.3 Motor Overload Operation	
	7.1.4 Current Imbalance / Negative Sequence Current Compensation	
	7.1.5 Harmonic Compensation	
	7.1.6 Hot / Cold Motor Overload Compensation	
	7.1.7 RTD Overload Biasing	
	7.1.8 Overload Auto Lockout	
	7.1.9 Separate Starting and Running Motor Overload Settings	
	7.1.10 Motor Cooling While Stopped	
	7.1.11 Motor Cooling While Running	
	7.1.12 Emergency Motor Overload Reset	121
	7.2 Motor Service Factor	122
	7.2 Application Control	
	7.3 Acceleration Control	123
	7.3.1 Current Ramp Settings, Ramps and Times	
		123
	7.3.1 Current Ramp Settings, Ramps and Times	123 124
	7.3.1 Current Ramp Settings, Ramps and Times	123 124 124
	7.3.1 Current Ramp Settings, Ramps and Times	123 124 124 126
	7.3.1 Current Ramp Settings, Ramps and Times	123 124 124 126 127
	7.3.1 Current Ramp Settings, Ramps and Times 7.3.2 Programming A Kick Current 7.3.3 TruTorque Acceleration Control Settings and Times 7.3.4 Power Control Acceleration Settings and Times 7.3.5 Open Loop Voltage Ramps and Times	123 124 124 126 127 128
	7.3.1 Current Ramp Settings, Ramps and Times 7.3.2 Programming A Kick Current 7.3.3 TruTorque Acceleration Control Settings and Times 7.3.4 Power Control Acceleration Settings and Times 7.3.5 Open Loop Voltage Ramps and Times 7.3.6 Dual Acceleration Ramp Control 7.3.7 Tachometer Ramp Selection	123 124 124 126 127 128 128
	7.3.1 Current Ramp Settings, Ramps and Times 7.3.2 Programming A Kick Current 7.3.3 TruTorque Acceleration Control Settings and Times 7.3.4 Power Control Acceleration Settings and Times 7.3.5 Open Loop Voltage Ramps and Times 7.3.6 Dual Acceleration Ramp Control	123 124 124 126 127 128 128 131

	7.5 Braking Controls. 7.5.1 DC Injection Braking, Standard Duty 7.5.2 DC Injection Braking, Heavy Duty 7.5.3 Braking Output Relay 7.5.4 Stand Alone Overload Relay for emergency ATL (Across The Line) Operation 7.5.5 DC Injection Brake Wiring Example 7.5.6 DC Brake Timing 7.5.7 DC Injection Brake Enable and Disable Digital Inputs 7.5.8 Use of Optional Hall Effect Current Sensor 7.5.9 DC Injection Braking Parameters	134 134 134 135 136 136 137
	7.6 Slow Speed Cyclo Converter	138
	7.7 Wye Delta Starter	140
	7.8 Across The Line (Full Voltage Starter)	143
	7.9 Start/Stop Control with a Hand/Off/Auto Selector Switch	144
	7.10 Simplified I/O Schematics	145
	7.11 Remote Modbus Communications 7.11.1 Supported Commands 7.11.2 Modbus Register Addresses 7.11.3 Cable Specifications. 7.11.4 Terminating Resistors 7.11.5 Grounding. 7.11.6 Shielding. 7.11.7 Wiring	146 146 146 146 146 146
8 TRO	OUBLESHOOTING & MAINTENANCE	150
	8.1 Safety Precautions	150
	8.2 Preventative Maintenance 8.2.1 General Information 8.2.2 Preventative Maintenance	150
	8.3 LED Diagnostics	151
	8.4 General Troubleshooting Charts 8.4.1 Stack Overtemp Lockout 8.4.2 Motor does not start, no output to motor 8.4.3 During starting, motor rotates but does not reach full speed 8.4.4 Starter not accelerating as desired 8.4.5 Starter not decelerating as desired 8.4.6 Motor stops unexpectedly while running 8.4.7 Metering incorrect 8.4.8 Other Situations	153 153 154 154 155
	8.5 Fault Code Table	158

8.7 Ohm Meter Testing 8.7.1 Fuse Tests 8.7.1 Fuse Tests 8.7.2 Shorted SCR Test 8.7.3 Alternative Shorted SCR Test 8.7.4 Shorted SCR Found 8.7.5 SCR Gate to Cathode Test 8.7.5 SCR Gate to Cathode Test	166166166	6 6 7 7
8.8 SCR Replacement 8.8.1 Card Removal 8.8.2 SCR Clamp 8.8.3 SCR Removal 8.8.4 SCR Installation 8.8.5 Re-Test SCR's 8.8.6 Re-Assemble Unit	. 166 . 176 . 176 . 176	9 9 0 0
8.9 Built-In Self Test (BIST) 8.9.1 General Information 8.9.2 Test Setup 8.9.3 BIST Notes 8.9.4 Conducting a BIST 8.9.5 Begin BIST Test 8.9.6 RUN relay and In-line Test 8.9.7 UTS relay and Bypass Test 8.9.8 Sequential SCR Gate Firing 8.9.9 All SCR Gates Firing 8.9.10 Resetting System 8.9.11 BIST Test Cancelled	. 17 . 17 . 17 . 17 . 17 . 17 . 17 . 17	1 1 3 3 3 4 4 5
8.10 High Pot Testing		
8.11 Vacuum Contactor		
8.12 RTD Module Troubleshooting		
8.13 VACUUM contactor and Power Pole assembly Maintenance	. 17	6
APPENDIX A EVENT CODES	. 18	0
APPENDIX B ALARM CODES	. 18	1
APPENDIX C FAULT CODES	. 18	3
APPENDIX D SPARE PARTS	. 18	5
APPENDIX E EU DECLARATION OF CONFORMITY	. 18	6
APPENDIX F MODBUS REGISTER MAP	. 18	7
APPENDIX G APPLICATION GLOSSARY		
APPENDIX H 3-YEAR WARRANTY		
APPENDIX I PARAMETER TABLES		
	. 40	J

1	Introduction

Using This Manual

Layout

This manual is divided into 9 sections. Each section contains topics related to the section. The sections are as follows:

- Introduction
- Technical Information
- Installation
- · Keypad Operation
- Parameters
- · Parameter Descriptions
- · Theory of Operation
- · Troubleshooting & Maintenance
- · Appendices

Symbols

There are 2 symbols used in this manual to highlight important information. The symbols appear as the following:

Electrical Hazard warns of situations in which a high voltage can cause physical injury, death and/or damage equipment.

Caution warns of situations in which physical injury and/damage to equipment may occur by means other than electrical.

Highlight mark an important point in the documentation.

M DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Only qualified personnel familiar with low voltage equipment are to perform work described in this set of instructions. Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E. Turn off all power before working on or inside equipment.

Use a properly rated voltage sensing device to confirm that the power is off.

Before performing visual inspections, tests, or maintenance on the equipment, disconnect all sources of electric power. Assume that circuits are live until they have been completely de-energized, tested, and tagged. Pay particular attention to the design of the power system. Consider all sources of power, including the possibility of backfeeding. Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

Benshaw Services

General Information

Benshaw offers its customers the following:

- · Start-up services
- · On-site training services
- · Technical support
- Detailed documentation
- · Replacement parts

NOTE: Information about products and services is available by contacting Benshaw, refer to page 4.

Start-Up Services

Benshaw technical field support personnel are available to customers with the initial start-up of the RediStart MVRMX³. Information about start-up services and fees are available by contacting Benshaw.

On-Site Training Services

Benshaw technical field support personnel are available to conduct on-site training on RediStart MVRMX³ operations and troubleshooting.

Technical Support

Benshaw technical support personnel are available (at no charge) to answer customer questions and provide technical support over the telephone. For more information about contacting technical support personnel, refer to page 4.

Documentation

Benshaw provides all customers with:

- Operations manual.
- · Wiring diagram.

All drawings are produced in AutoCAD format. The drawings are available on standard CD / DVD or via e-mail by contacting Benshaw.

On-Line Documentation

All RediStart MVRMX³ documentation is available on-line at http://www.benshaw.com.

Replacement Parts

Spare and replacement parts can be purchased from Benshaw Technical Support.

Software Number

This manual pertains to the software version number 1) 810023-02-01. 2) 810024-01-01.

Hardware Number

This manual pertains to the hardware assembly version number BIPC-450100-01-01.

Publication History

See page 213.

Warranty

Benshaw provides a 1 year standard warranty with its starters. An extension to the 3 year warranty is provided when a Benshaw or Benshaw authorized service technician completes the installation and initial start up. The warranty data sheet must also be signed and returned. The cost of this service is not included in the price of the Benshaw soft starter and will be quoted specifically to each customers needs. All recommended maintenance procedures must be followed throughout the warranty period to ensure validity. This information is also available by going online to register at www.benshaw.com.

Contacting Benshaw

Contacting Benshaw

Information about Benshaw products and services is available by contacting Benshaw at one of the following offices:

Benshaw Inc. Corporate Headquarters

1659 E. Sutter Road Glenshaw, PA 15116

Phone: (412) 487-8235 Tech Support: (800) 203-2416 Fax: (412) 487-4201

Benshaw Canada Controls Inc.

550 Bright Street East

Listowel, Ontario N4W 3W3 Phone: (519) 291-5112

Tech Support: (877) 236-7429 (BEN-SHAW)

Fax: (519) 291-2595

Benshaw West

14715 North 78th Way, Suite 600

Scottsdale, AZ 85260

Phone: (480) 905-0601 Fax: (480) 905-0757

Benshaw High Point

EPC Division 645 McWay Drive High Point, NC 27263 Phone: (336) 434-4445

Fax: (336) 434-9682

Benshaw Mobile

CSD Division

5821 Rangeline Road, Suite 202

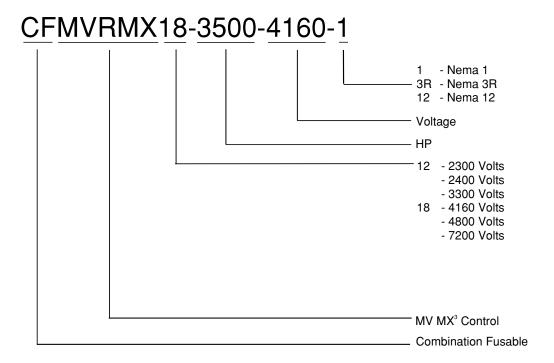
Theodor, AL 36582 Phone: (251) 443-5911 Fax: (251) 443-5966

Benshaw Pueblo

Trane Division 1 Jetway Court Pueblo, CO 81001

Phone: (719) 948-1405 Fax: (719) 948-1445

Technical support for the RediStart MVRMX³ Series is available at no charge by contacting Benshaw's customer service department at one of the above telephone numbers. A service technician is available Monday through Friday from 8:00 a.m. to 5:00 p.m. EST.


₩ NOTE: An on-call technician is available after normal business hours and on weekends by calling Benshaw and following the recorded instructions.

To help assure prompt and accurate service, please have the following information available when contacting Benshaw:

- Name of Company
- Telephone number where the caller can be contacted
- · Fax number of caller
- · Benshaw product name
- Benshaw model number
- Benshaw serial number
- Name of product distributor
- Approximate date of purchase
- Voltage of motor attached to Benshaw product
- · FLA of motor attached to Benshaw product
- A brief description of the application

Interpreting Model Numbers

Figure 1: RediStart MVRMX³ Series Model Numbers

Example of Model Number: CFMVRMX18-3500-4160-1

A Combination Fusable RediStart starter with MV MX³ control, 4160 Volts, 3500 Horse Power, NEMA 1 Enclosure.

General Overview Of A Reduced Voltage Starter

General Overview

The RediStart MVRMX³ motor starter is a microprocessor-controlled starter for single or three-phase motors. The starter can be custom designed for specific applications. A few of the features are:

- · Solid state design
- Reduced voltage starting and soft stopping
- Closed-loop motor current control, power (kW) control, torque control
- · Programmable motor protection
- · Programmable operating parameters
- Programmable metering
- Communications

Each starter can operate within applied frequency values 23 to 72Hz and line voltage of:

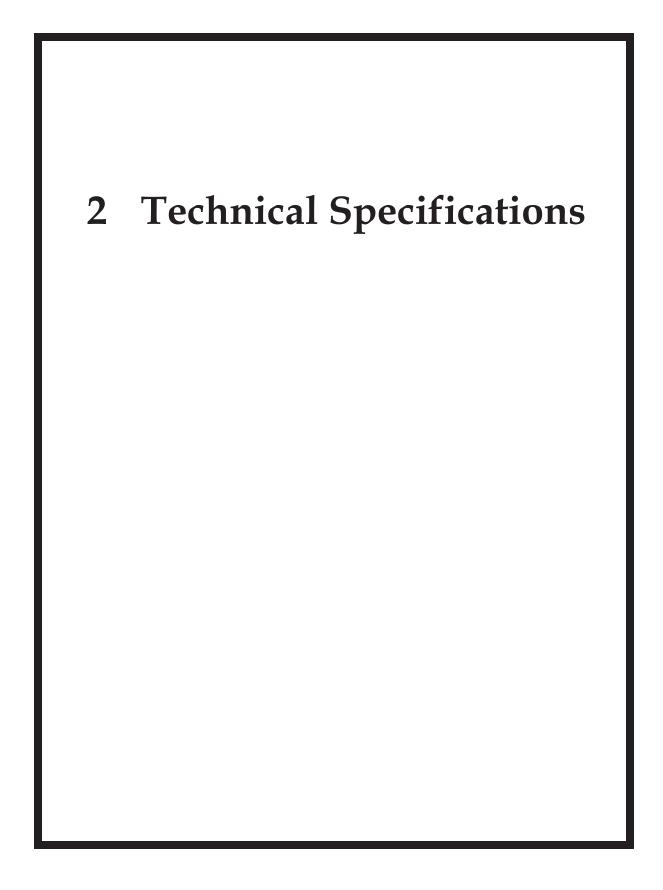
2,200VAC to 2,400VAC

3,300VAC to 4,800VAC

4,800VAC to 7,200VAC

10,000VAC to 12,000VAC

12,470VAC to 13,800VAC


The starter can be programmed for any motor FLA and all of the common motor service factors. It enables operators to control both motor acceleration and deceleration. The RediStart MVRMX³ can also protect the motor and its load from damage that could be caused by incorrect phase order wiring.

The starter continually monitors the amount of current being delivered to the motor. This protects the motor from overheating or drawing excess current.

Features

The enhanced engineering features of the starter include:

- · Multiple frame sizes
- Universal voltage operation
- Universal frequency operation
- Programmable motor overload multiplier
- · Controlled acceleration and deceleration
- · Phase rotation protection
- Regulated current control
- · Electronic motor thermal overload protection
- Electronic over/under current protection
- · Single phase protection
- Line-to-line current imbalance protection
- Stalled motor protection
- Programmable metering
- · Passcode protected
- Programmable Relays
- · Analog output with digital offset and span adjustment
- Analog input with digital offset and span adjustment
- Voltage and Current Accuracy of 3%
- Slow speed (Cyclo Conversion) 1.0 40.0% forward and reverse
- Motor Winding Heater (Anti-Condensation)
- Anti-windmilling brake
- PTC Thermistor
- 99 Event Recorder
- 9 Fault Log
- · Real Time Clock
- Zero Sequence Ground Fault
- · Backspin Timer
- Starts per Hour
- Time between Starts
- PORT (Power Outage Ride Through)
- 16 RTD with O/L Biasing
- D.C. Injection Braking

2 - TECHNICAL SPECIFICATIONS

Technical Specifications

2.1 General Information

The physical specifications of the starter vary depending upon its configuration. The applicable motor current determines the configuration and its specific application requirements. **Specifications are subject to change without notice.**

This document covers the control electronics and several power sections:

- MX³ Control Card Set
- · Power Stacks with inline and bypass vacuum contactors

2.2 Electrical Ratings

2.2.1 Terminal Points and Functions

Table 1: Terminals

Function	Terminal Block	Terminal Number	Description
Control Power	TB1	G, ground N, 120VAC neutral N, 120VAC neutral L, 120VAC line L, 120VAC line	96 – 144 VAC input, 50/60 Hz 45VA required for control card
Relay 1 (R1)	TB2	NO1:Normally Open Contact RC1:Common NC1: Normally Closed Contact	Relay Output, SPDT form C NO Contact (resistive) NC Contact(resistive) 5A at 250VAC 3A at 250VAC 5A at 125VAC 3A at 125VAC 5A at 30VDC 3A at 30VDC 1250VA 750VA
Relay 2 (R2)	TB2	NO2: Normally Open Contact RC2: Common Contact NC2: Normally Closed Contact	Relay Output, SPDT form C NO Contact (resistive) NC Contact(resistive) 5A at 250VAC 3A at 250VAC 5A at 125VAC 3A at 125VAC 5A at 30VDC 3A at 30VDC 1250VA 750VA
Relay 3 (R3)	TB2	NO3: Normally Open Contact RC3: Common Contact NC3: Normally Closed Contact	10A at 250VAC 10A at 125VAC 10A at 30VDC 2500VA
Relay 4 (R4)	Ј3	R4A: Normally Open Contact R4B: Normally Open Contact	Relay Output, SPST-NO form A Resistive: 5A at 250VAC 5A at 125VAC 5A at 30VDC 1250VA
Relay5 (R5)	Ј3	R5A: Normally Open Contact R5B: Normally Open Contact	Relay Output, SPST-NO form A Resistive: 5A at 250VAC 5A at 125VAC 5A at 30VDC 1250VA
Relay6 (R6)	J3	R6A: Normally Open Contact R6B: Normally Open Contact	Relay Output, SPST-NO form A Resistive: 5A at 250VAC 5A at 125VAC 5A at 30VDC 1250VA
Digital Inputs	TB3	1: Start 2: DI1 3: DI2 4: DI3 5: Common	120VAC digital input 2500V optical isolation 4mA current draw Off: 0-35VAC On: 60-120VAC
Digital Inputs	J6	1: D14 2: D15 3: D16 4: D17 5: D18 6: Common	120VAC digital input 2500V optical isolation 4mA current draw Off: 0-35VAC On: 60-120VAC

Function	Terminal Block	Terminal Number	Description
Serial Comm	TB4	1: B+ 2: A- 3: COM	Modbus RTU serial communication port. RS-485 interface 19.2k baud maximum 2500V Isolation
Analog I/O	TB5	1: Ain Power 2: Ain + 3: Ain - 4: Common 5: Aout 6: Common 7: Shield	Input: Voltage or Current Voltage: $0\text{-}10\text{VDC}$, $67\text{K}\Omega$ impedance Current: $0\text{-}20\text{mA}$, 500Ω impedance Output: Voltage or Current Voltage: $0\text{-}10\text{VDC}$, 120mA maximum Current: $0\text{-}20\text{mA}$, 500Ω load maximum
PTC Thermistor Input	J7	1: Motor PTC 2: Motor PTC	Positive Temperature Coefficient Thermistor - Trip resistance 3.5K, ± 300 Ohms. - Reset resistance 1.65K, ± 150 Ohms. - Open terminal voltage is 15V. - PTC voltage at 4Kohms = 8.55V. (>7.5V) - Response time adjustable between 1 and 5 seconds. - Maximum cold resistance of PTC chain = 1500 Ohms.
Zero Sequence Ground Fault	J15	1: CT input 2: CT input	Zero Sequence Ground Fault CT Type: 50:0.025 (2000:1 ratio) Measurement range: 0.1A - 25.0 Amps Accuracy : +/- 3% Burden at 25Amps : 0.0089VA.
Display	RJ45		Door Mounted Display Connector
SCR	SCR 1A-F SCR 2A-F SCR 3A-F	ISO 1 to ISO 18	Fiber Optic connector
Stack OT	Phase 1 Phase 2 Phase 3	LS1 LS2 LS3	Fiber Optic connector
Phase C.T. (5 Amp input)	J10	1: CT1+ 2: CT1 3: CT2+ 4: CT2 5: CT3+ 6: CT3	Phase CT Connector

Wire Gauge: The terminals can support 1- 14 AWG wire or 2-16 AWG wires or smaller.

The terminals on the control cards have a torque rating of 5.0-inch lb. or 0.56Nm. This MUST be followed or damage will occur to the terminals. **Torque Rating:**

₩ NOTE: Refer to Control Card Layout starting on page 28.

2 - TECHNICAL SPECIFICATIONS

2.2.2 Measurements and Accuracies

Table 2: Measurements and Accuracies

Internal Measurements	
CT Inputs	Conversion: True RMS, Sampling @ 1.562kHz Range: 1-6400A
Line Voltage Inputs	Conversion: True RMS, Sampling @ 1.562kHz Range: 2,000 - 8,000VAC, 23 to 72 Hz
Metering	$0 - 40000\mathrm{Amps} \pm 3\%$
Current Voltage Watts Volts-Amps Watt-Hours PF Line Frequency Ground Fault Run Time Analog Input	0 - 40,000 Amps ± 3% 0 - 8,000 Volts ± 3% 0 - 9,999 MW ± 5% 0 - 10,000 MWh ± 5% 0 - 10,000 MWh ± 5% -0.01 to +0.01 (Lag & Lead) ± 5% 23 - 72 Hz ± 0.1 Hz 5 - 100% FLA ± 5% (Machine Protection) ± 3 seconds per 24 hour period Accuracy ± 3% of full scale (10 bit) Accuracy ±2% of full scale (12 bit)
Analog Output Zero Seq GF	0.1 – 25.0 Amps ± 3% % NOTE: Percent accuracy is percent of full scale of the given ranges, Current = Motor FLA, Voltage = 8,000V, Watts/Volts-Amps/Watt-Hours = Motor & Voltage range

2.2.3 List of Motor Protection Features

- ANSI 14 Speed Switch and Tachometer Trip
- ANSI 19 Reduced Voltage Start
- ANSI 27 / 59 Adjustable over/under voltage protection (Off or 1 to 40%, time 0.1 to 90.0 sec. in 0.1 sec. intervals, independent over and under voltage levels)
- ANSI 37 Undercurrent detection (Off or 5 to 100% and time 0.1 to 90.0 sec. in 0.1 sec. intervals)
- ANSI 38 Bearing RTD Other RTD

Open RTD Alarm

- ANSI 46 Current imbalance detection (Off or 5 to 40%)
- ANSI 47 Phase rotation (selectable ABC, CBA, Insensitive, or Single Phase)
- ANSI 48 Adjustable up-to-speed / stall timer (1 to 900 sec. in 1 sec. intervals)
- ANSI 49 Stator RTD
- ANSI 50 Instantaneous electronic overcurrent trip
- ANSI 51 Electronic motor overload (Off, class 1 to 40, separate starting and running curves available)
- ANSI 51 Overcurrent detection (Off or 50 to 800% and time 0.1 to 90.0 sec. in 0.1 sec. intervals)
- ANSI 51G Residual Ground fault detection (Off or 5 to 100% of motor FLA)
 Zero Sequence Ground Fault Detection (Off, 0.1 25Amps)
- ANSI 66 Starts/Hour & Time Between Starts Restart Block (Backspin Timer)
- ANSI 74 Alarm relay output available
- ANSI 81 Over / Under Frequency
- ANSI 86 Overload lockout
- Single Phase Protection
- Shorted SCR Detection
- · Mechanical Jam

2.2.4 Solid State Motor Overload

The $MVRMX^3$ control has an advanced I^2t electronic motor overload (OL) protection function. For optimal motor protection the $MVRMX^3$ control has forty standard NEMA style overload curves available for use. Separate overloads can be programmed, one for acceleration and another for normal running operation. The overloads can be individual, the same or completely disabled if necessary. The $MVRMX^3$ motor overload function also implements a NEMA based current imbalance overload compensation, RTD Biasing, user adjustable hot and cold motor compensation and user adjustable exponential motor cooling.

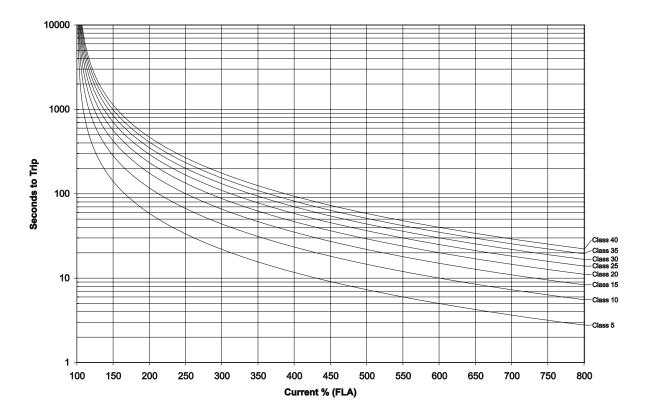


Figure 2: Commonly Used Overload Curves

The motor overload will NOT trip when the current is less than motor Full Load Amps (FLA) * Service Factor (SF).

The motor overload "pick up" point current is at motor Full Load Amps (FLA) * Service Factor (SF).

The motor overload trip time will be reduced when there is a current imbalance present.

NOTE: Refer to Theory of Operation, Chapter 7 in section 7.1 for more motor overload details and a larger graph.

Refer to http://www.benshaw.com/olcurves.html for an automated overload calculator.

2 - TECHNICAL SPECIFICATIONS

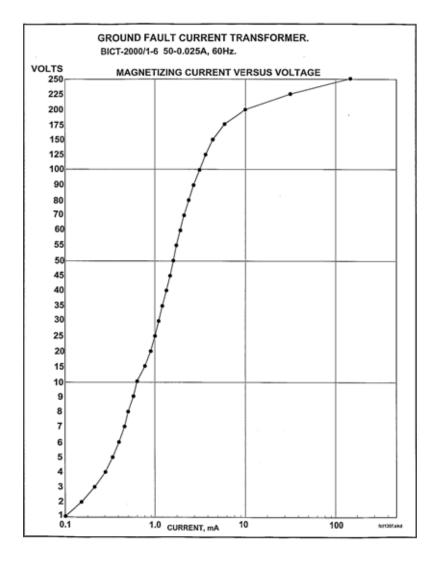
2.2.5 CT Ratios

Table 3: CT Ratios

CT Ratio (x:5)	Minimum FLA (A rms)	Maximum FLA (A rms)
50:5	11	45
150:5	33	135
250:5	55	225
800:5	176	720
2000:5	440	1800
5000:5	1100	4500

2.2.6 Optional RTD Module Specifications

The starter has the option of operating with up to two Benshaw SPR-100P remote RTD modules.


Table 4: Remote RTD Module Specifications

Model Number	SPR-100P
RTD Type	100Ω Platinum, 3 lead
TCD (-)	0.00385 Ω/Ω/°C
TCR (α)	(DIN 43760)
Maximum Lead Resistance	25Ω per lead
Recommended Lead Resistance	Less than 16Ω per lead
Shorted Lead Detection	< 60Ω
Open Lead Detection	> 260Ω
RTD Sensing Current	10 mA DC
RTD Sensing Voltage	10V DC maximum
Range	0 to 200 °C (32 to 392 °F)
Resolution	1 °C (1.8 °F)
Accuracy	±1.0% full scale (±2 °C or ±3.6 °F)
Sampling Rate	1 RTD per second
Number of RTDs	8
Input Voltage	24 Volts DC ± 20%, 2.5W
Communication Type	Modbus RTU, RS-485, 19.2Kbps
Modbus® Addresses	16 to 23
Operating Environment	-40 to 60 °C (-40 to 140 °F), up to 95% R.H., non-condensing
Terminal Strips	Accepts one or two stranded copper wires of the same size from 12 to 30 AWG
Dimensions	5 ½" W x 3 ½" H x 2 ¼" D
Listing	cUL

2.2.7 Optional Zero Sequence Ground Fault CT

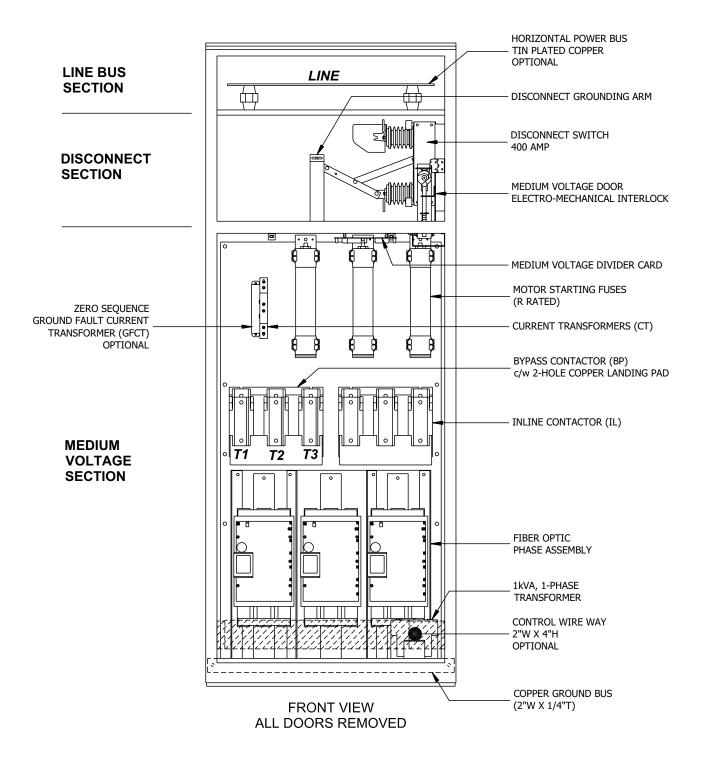

The Benshaw BICT 2000/1-6 CT has the following excitation curve.

Figure 3: BICT2000/1-6 Excitation Curve

Sample RediStart MVRMX³ Unit

2.3 Sample RediStart MVRMX³ Unit

₩ NOTE: This is only a sample diagram drawing for component identification purposes. Component locations may change to meet end users specifications.

Environmental Conditions

2.4 Environmental Conditions

Table 6: Environmental Ratings

Operating Temperatures	-10°C to +40°C (14°F to 104°F)enclosed -10°C to +50°C (14°F to 122°F)open
Storage Temperatures	-20°C to +70°C (-4°F to 155°F)
Humidity	0% to 95% non condensing
Altitude	1000m (3300ft) without derating
Maximum Vibration	$5.9 \text{m/s}^2 (19.2 \text{ft/s}^2) [0.6 \text{G}]$
Cooling	Natural convection (Fans optional)

Altitude Derating

2.5 Altitude Derating

Benshaw's starters are capable of operating at altitudes up to 3,300 feet (1000 meters) without requiring altitude derating. Table 7 provides the derating percentage to be considered when using a starter above 3,300 feet (1000 meters).

Table 7: Altitude Derating

Altitude		Percent Derating (Amps)		
3300 Feet	1006 meters	0.0%		
4300 Feet	1311 meters	3.0%		
5300 Feet	1615 meters	6.0%		
6300 Feet	1920 meters	9.0%		
7300 Feet	2225 meters	12.0%		
8300 Feet	2530 meters	15.0%		
9300 Feet	2835 meters	18.0%		

For derating above 10,000 feet consult Benshaw Inc.

Real Time Clock

2.6 Real Time Clock

The MX^3 comes with a real time clock. The user can enter the actual time and the starter will use this time when it logs faults in the fault recorder as well as events in the event recorder. This can help with troubleshooting. The system clock does not recognize daylight savings time.

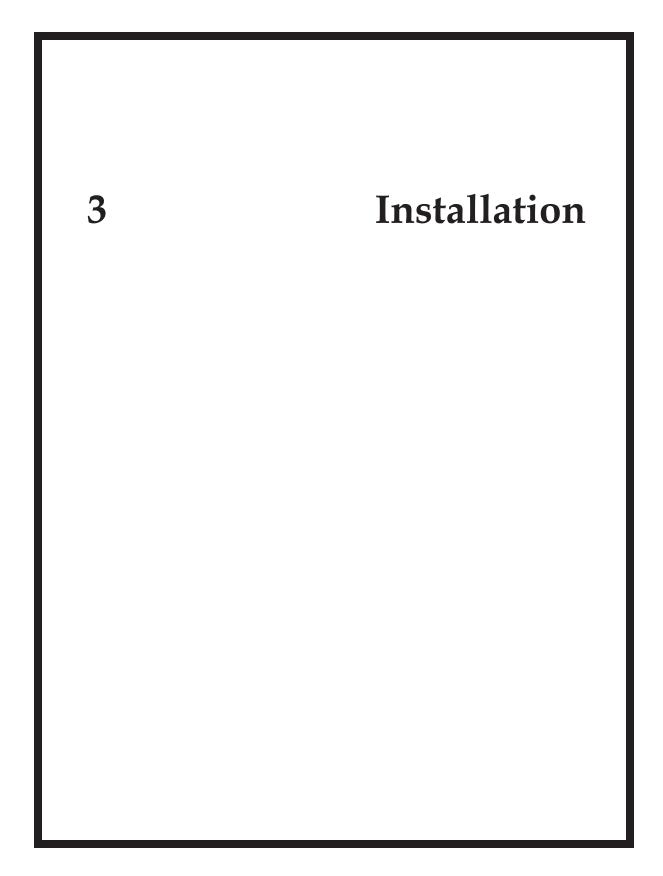
Accuracy: +- 1 minute per month

Range: 1/1/1972 to 1/1/2107 with automatic leap year compensation.

Approvals

2.7 Approvals

MX3 Control Card Set is UL, cUL Recognized


Certificate of Compliance

2.8 Certificate of Compliance

CE Mark, see Appendix E on page 186.

2 - TECHNICAL SPECIFICATIONS

NOTES:

Before You Start

3.1 Before You Start

3.1.1 Installation Precautions

Inspection

Before storing or installing the RediStart MVRMX³ Series Starter, thoroughly inspect the device for possible shipping damage. Upon receipt:

- Remove the starter from its package and inspect exterior for shipping damage. If damage is apparent, notify the shipping agent and
 your sales representative.
- Open the enclosure and inspect the starter for any apparent damage or foreign objects. Ensure that all of the mounting hardware and terminal connection hardware is properly seated, securely fastened, and undamaged.
- Ensure all connections and wires are secured.
- Read the technical data label affixed to the starter and ensure that the correct horsepower and input voltage for the application has been purchased.

General Information

Installation of some models may require halting production during installation. If applicable, ensure that the starter is installed when production can be halted long enough to accommodate the installation. Before installing the starter, ensure:

- The wiring diagram (supplied separately with the starter) is correct for the required application.
- The starter is the correct current rating and voltage rating for the motor being started.
- · All of the installation safety precautions are followed.
- The correct power source is available.
- The starter control method has been selected.
- The connection cables have been obtained (lugs) and associated mounting hardware.
- The necessary installation tools and supplies are procured.
- The installation site meets all environmental specifications for the starter NEMA/CEMA rating.
- · The motor being started has been installed and is ready to be started.
- Any power factor correction capacitors (PFCC) are installed on the power source side of the starter and not on the motor side.

Failure to remove power factor correction or surge capacitors from the load side of the starter will result in serious damage to the starter that will not be covered by the starter warranty. The capacitors must be connected to the line side of the starter. The up-to-speed (UTS) contact can be used to energize the capacitors after the motor has reached full speed.

3.1.2 Safety Precautions

To ensure the safety of the individuals installing the starter, and the safe operation of the starter, observe the following guidelines:

- Ensure that the installation site meets all of the required environmental conditions (refer to Site Preparation, page 19).
- · LOCK OUT ALL SOURCES OF POWER.
- Install circuit disconnecting devices (i.e., circuit breaker, fused disconnect or non-fused disconnect) if they were not previously
 installed by the factory as part of the package.
- · Install short circuit protection (i.e., circuit breaker or fuses) if not previously installed by the factory as part of the package.
- Follow all NEC (National Electrical Code) and/or C.S.A. (Canadian Standards Association) standards or Local Codes as applicable.
- · Remove any foreign objects from the interior of the enclosure, especially wire strands that may be left over from installation wiring.
- · Ensure that a qualified electrician installs wiring.
- Ensure that the individuals installing the starter are wearing ALL protective eyewear and clothing.
- Ensure the starter is protected from debris, metal shavings and any other foreign objects.

The opening of the branch circuit protective device may be an indication that a fault current has been interrupted. To reduce the risk of electrical shock, current carrying parts and other components of the starter should be inspected and replaced if damaged.

Installation Considerations

3.2 Installation Considerations

3.2.1 Site Preparation

General Information

Before the starter can be installed, the installation site must be prepared. The customer is responsible for:

- Providing the correct power source
- Providing the correct power protection
- Selecting the control mechanism
- Obtaining the connection cables, lugs and all other hardware
- Ensuring the installation site meets all environmental specifications for the enclosure NEMA rating
- · Installing and connecting the motor

Power Cables

The power cables for the starter must have the correct NEC/CSA current rating for the unit being installed. Depending upon the model, the power cables can range from a single #14 AWG conductor to four 750 MCM cables. (Consult local and national codes for selecting wire size).

Site Requirements

The installation site must adhere to the applicable starter NEMA/CEMA rating. For optimal performance, the installation site must meet the appropriate environmental and altitude requirements.

3.2.2 EMC Installation Guidelines

General In order to help our customers comply with European electromagnetic compatibility standards, Benshaw Inc. has

developed the following guidelines.

Attention This product has been designed for Class A equipment. Use of the product in domestic environments may cause radio

interference, in which case the installer may need to use additional mitigation methods.

Enclosure Install the product in a grounded metal enclosure.

Grounding Connect a grounding conductor to the screw or terminal provided as standard on each controller. Refer to layout/power

wiring schematic for grounding provision location.

Wiring Refer to Wiring Practices on page 21.

Filtering To comply with Conducted Emission Limits (CE requirement), a high voltage (1000V or greater) 0.1 uF capacitor

should be connected from each input line to ground at the point where the line enters the cabinet.

3.2.3 R-Rated Motor Starter Fuses

R-rated fuses are current-limiting, high interrupting rating fuses intended for the short-circuit protection of medium voltage motors and motor controllers. R-rated fuses are back up fuses that have a minimum interrupting rating, and must be coordinated with overload relays in combination motor starters.

3.2.4 Use of Electro-Mechanical Brakes

If an electro-mechanical brake is used with the starter, it must be powered from the line side of the starter to ensure full voltage is applied to the brake during a start so it will properly release. A programmable relay can be configured as a run relay and then used to pull-in a contactor to power the brake whenever the starter is providing power to the motor.

3.2.5 Reversing Contactor

If the application requires a reversing contactor, it should be connected on the output side (load) of the soft starter. The contactor must be closed before starting the soft starter. The soft starter must be off before switching the direction of the reversing contactor. The reversing contactor must never be switched while the soft starter is operating.

3.2.6 Use of Power Factor Capacitors

Power factor correction capacitors and surge capacitors CAN NOT be connected between the starter and the motor. These devices can damage the SCRs during ramping. These devices appear like a short circuit to the SCR when it turns on, which causes a di/dt level greater than the SCR can handle. If used, power factor correction capacitors or surge capacitors must be connected ahead of the starter and sequenced into the power circuit after the start is completed. A programmable relay can be configured as an up-to-speed (UTS) relay and then used to pull-in a contactor to connect the capacitors after the motor has reached full speed.

₩ NOTE: If the motor manufacturer supplies surge capacitors they must be removed before starting.

Mounting Considerations

3.3 Mounting Considerations

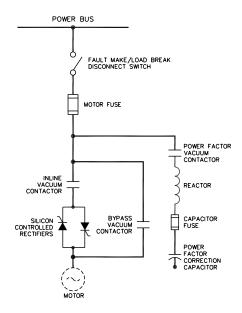
3.3.1 Bypassed Starters

Provisions should be made to ensure that the temperature inside the enclosure never rises above 50°C. If the temperature inside the enclosure is too high, the starter can be damaged or the operational life can be reduced.

FAULT MAKE/LOAD BREAK
DISCONNECT SWITCH

FUSE

POWER FACTOR
VACUUM
CONTACTOR


REACTOR
FUSE

POWER
FACTOR
CAPACITOR
CORRECTION
CAPACITOR
CORRECTION
CAPACITOR
FOR
CORRECTION
CAPACITOR
CONTACTOR

SILICON
CONTACTOR
CONTA

Figure 4: Separate Power Factor Correction Disconnect

Figure 5: Integral Power Factor Correction Disconnect

Wiring Considerations

3.4 Wiring Considerations

3.4.1 Wiring Practices

When making power and control signal connections, the following should be observed:

- Never connect input AC power to the motor output terminals T1/U, T2/V, or T3/W.
- Power wiring to the motor must have the maximum possible separation from all other wiring. Do not run control wiring in the same conduit; this separation reduces the possibility of coupling electrical noise between circuits. Minimum spacing between metallic conduits containing different wire groups should be three inches (8cm).
- Minimum spacing between different wiring groups in the same tray should be six inches.
- · Wire runs outside an enclosure should be run in metallic conduit or have shielding/armor with equivalent attenuation.
- Whenever power and control wiring cross it should be at a 90 degree angle.
- Different wire groups should be run in separate conduits.
- With a reversing application, the starter must be installed in front of the reversing contactors.

₩ NOTE: Local electrical codes must be adhered to for all wiring practices.

3.4.2 Considerations for Control and Power Wiring

Control wiring refers to wires connected to the control terminal strip that normally carry 24V to 115V and Power wiring refers to wires connected to the line and load terminals that normally carries 2200VAC to 7200VAC respectively. Select power wiring as follows:

- · Use only UL or CSA recognized wire.
- Grounding must be in accordance with NEC, CEC or local codes. If multiple starters are installed near each other, each must be
 connected to ground. Take care to not form a ground loop. The grounds should be connected in a STAR configuration.

3.4.3 Considerations for Signal Wiring

Signal wiring refers to the wires connected to the control terminal strip that are low voltage signals, below 15V.

- · Shielded wire is recommended to prevent electrical noise interference from causing improper operation or nuisance tripping.
- Signal wire rating should carry as high of a voltage rating as possible, normally at least 300V.
- · Routing of signal wire is important to keep as far away from control and power wiring as possible.

3.4.4 Meggering a Motor

If the motor needs to be meggered, remove the motor leads from the starter before conducting the test. Failure to comply may damage the SCRs and WILL damage the control board, which WILL NOT be replaced under warranty.

3.4.5 High Pot Testing

If the starter needs to be high pot tested, perform a DC high pot test. The maximum high pot voltage must not exceed 2.0 times rated RMS voltage \pm 2000VAC (High pot to 75% of factory). Failure to comply WILL damage the control board, which WILL NOT be replaced under warranty. An example to find the maximum high pot voltage is (2.0 * rated RMS voltage + 2000) * 0.75.

Typical Wiring Schematics

- 3.5 Typical Wiring Schematics
- 3.5.1 MVRMX³ Power Wiring Schematic

3Ø50/60Hz. 2200-6900 VAC BIPC-450100-01 MOT PTC TERMINALS (C) 감 PHASE 3 SCR STACK ASSEMBLY SAME AS PHASE 2 SCR STACK ASSEMBLY) BYPASS CONTACTOR TO TX2 IN-LINE CONTACTOR CT4 - GFCT ZERO SEQUENCE GROUND FAULT CT (OPTIONAL) 5ACT CT3 BIPC-450100-01 J10 5ACT CT2 SACT CT1 BIPC-300032-01 3Ø50/60Hz. L2 2200-6900 VAC

Figure 6: MVRMX³ Power Wiring Schematic

3.5.2 MVRMX³ Control Wiring Schematic

LOCATED IN LOW VOLTAGE SECTION SPR-100P RTD Monitor (Optional) BYPASS CONTACTOR COIL → T1 TO PTC THERMISTOR (SUPPLIED BY OTHERS) SERIAL-COMMUNICATION RS485 ±5V MAX ٥ PTC (O AIN+ COM Α̈́ AOUT SCR 2A SCR 2B SCR 2D SCR 2D SCR 2E TB5 ANALOG-OUTPUT TB4 MODBUS-SLAVE NNECTOR TX LEDS IN C. RX RX RS485 TX £5485 ₹5485 8×85 CONSISTS OF BIPC-300055-02 (TOP) & BIPC-300034-01 (BOTTOM) MEDIUM VOLTAGE MX³ CARD ASSEMBLY BIPC-450100-01 **©**‱ 8 8 8 **©** ст1/ст2/ст3 **©**‱ d **©**%4 % SW3 SW3 MAAM SW2 SW2 LINE VOLTAGE SENSING DIVIDER CARD BIPC-300032-01 TB2 -RELAY OUTPUTS J3 -RELAY OUTPUTS TB3 -OPTO INPUTS 90 O @ @ 0 014 (C) 2(N) DI4 THREE WIRE CONTROL TWO WIRE CONTROL INLINE CONTACTOR COIL LOCATED IN LOW VOLTAGE SECTION TO RTD MONITOR TX1 120VAC

Figure 7: MVRMX³ Control Wiring Schematic

Power Wiring

3.6 Power Wiring

Input Line Requirements

The input line source needs to be an adequate source to start the motor, generally 2 times the rating of the motor FLA. (This may not apply in some cases such as being connected to a generator).

3.6.1 Recommended Wire Gauges

The wire gauge selection is based on the FLA of the motor. Refer to NEC table 310-16 or CEC Part 1, Table 2 or local code requirements for selecting the correct wire sizing. Ensure appropriate wire derating for temperature is applied. If more than three current carrying conductors are in one conduit, ensure NEC table 310.15(B)(2) or CEC Part 1 Table 5C is adhered to. In some areas local codes may take precedence over the NEC. Refer to your local requirements.

3.6.2 Power Wire Connections

Attach the motor cables:

• Use the T1, T2 and T3 terminals. Use lugs/crimps or terminals (lugs and crimps are to be provided by the user).

Attach the power source cables:

• Use the L1, L2 and L3 terminals. Use lugs/crimps or terminals (lugs and crimps are to be provided by the user).

3.6.3 Motor Lead Length

The standard starter can operate a motor with a maximum of 600 feet of properly sized cable between the "T" leads of the starter and that of the motor. For wire runs greater than 600 feet contact Benshaw Inc. for application assistance. If shielded cable is used, consult factory for recommended length.

3.6.4 Compression Lugs

The following is a list of the recommended crimp-on wire connectors manufactured by Penn-Union Corp. for copper wire.

Wire Size Part# Wire Size Part # BLU-1/0S20 BLU-050S2 1/0 500 MCM BLU-060S1 2/0 BLU-2/0S4 600 MCM BLU-065S5 3/0 BLU-3/0S1 650 MCM 4/0 BLU-4/0S1 750 MCM BLU-075S 250 MCM BLU-025S 800 MCM **BLU-080S** 300 MCM **BLU-030S** 1000 MCM BLU-100S 350 MCM BLU-035S 1500 MCM **BLU-150S** 400 MCM BLU-040S4 2000 MCM BLU-200s 450 MCM BLU-045S1

Table 8: Single Hole Compression Lugs

Table 9: Two Hole Compression Lugs

Wire Size	Part #	Wire Size	Part #
1/0	BLU-1/0D20	500 MCM	BLU-050D2
2/0	BLU-2/0D4	600 MCM	BLU-060D1
3/0	BLU-3/0D1	650 MCM	BLU-065D5
4/0	BLU-4/0D1	750 MCM	BLU-075D
250 MCM	BLU-025D	800 MCM	BLU-080D
300 MCM	BLU-030D	1000 MCM	BLU-100D
350 MCM	BLU-035D	1500 MCM	BLU-150D
400 MCM	BLU-040D4	2000 MCM	BLU-200D
450 MCM	BLU-045D1		

3.6.5 Torque Requirements for Power Wiring Terminations

Table 10: Slotted Screws and Hex Bolts

			Tightening torque, pound-inches (N-m)						
Wire size install	led in conductor	Slotted head NO. 10 and larger			rger	Hexagonal head-external drive socket wrench			
AWG or kemil	(mm²)	(1.2mm) (width-0.047 inch mm) or less and length ¼ inch .4mm) or less (6.4mm) or less		Split- bolt connectors		Other connectors		
18 – 10	(0.82 - 5.3)	20	(2.3)	35	(4.0)	80	(9.0)	75	(8.5)
8	(8.4)	25	(2.8)	40	(4.5)	80	(9.0)	75	(8.5)
6 – 4	(13.3 - 21.2)	35	(4.0)	45	(5.1)	165	(18.6)	110	(12.4)
3	(26.7)	35	(4.0)	50	(5.6)	275	(31.1)	150	(16.9)
2	(33.6)	40	(4.5)	50	(5.6)	275	(31.1)	150	(16.9)
1	(42.4)	_		50	(5.6)	275	(31.1)	150	(16.9)
1/0 - 2/0	(53.5 - 64.4)	_	_	50	(5.6)	385	(43.5)	180	(20.3)
3/0 - 4/0	(85.0 - 107.2)	_	_	50	(5.6)	500	(56.5)	250	(28.2)
250 – 350	(127 – 177)	_	_	50	(5.6)	650	(73.4)	325	(36.7)
400	(203)	_	_	50	(5.6)	825	(93.2)	375	(36.7)
500	(253)	_	_	50	(5.6)	825	(93.2)	375	(42.4)
600 – 750	(304 - 380)		_	50	(5.6)	1000	(113.0)	375	(42.4)
800 – 1000	(406 - 508)			50	(5.6)	1100	(124.3)	500	(56.5)
1250 – 2000	(635 – 1010)					1100	(124.3)	600	(67.8)

 \Re NOTE – For a value of slot width or length not corresponding to those specified above, the largest torque value associated with the conductor size shall be marked. Slot width is the nominal design value. Slot length is measured at the bottom of the slot.

Table 11: Tightening Torque for Inside Hex Screws

Socket size across flats		Tightening torque		
inches	(mm)	Pound-inches	(N-m)	
1/8	(3.2)	45	(5.1)	
5/32	(4.0)	100	(11.3)	
3/16	(4.8)	120	(13.6)	
7/32	(5.6)	150	(16.9)	
1/4	(6.4)	200	(22.6)	
5/16	(7.9)	275	(31.1)	
3/8	(9.5)	275	(42.4)	
1/2	(12.7)	500	(56.5)	
9/16	(14.3)	600	(67.8)	

 \Re NOTE – For screws with multiple tightening means, the largest torque value associated with the conductor size shall be marked. Slot length shall be measured at the bottom of the slot.

Current Transformers

3.7 Current Transformers

3.7.1 CT Mounting

If the CTs are shipped loose they need to be mounted on the power wiring. Thread the power wire through the CT and supplied sleeving, ensuring the polarity mark is towards the line side. (The polarity marks may be a white or yellow dot, an "X" on the side of the CT, or the white wire.) Each phase has its own CT. The CT must then be attached to the power wiring using two tie-wraps.

POWER WIRE

INSULATING SLEEVE/TUBE

WHITE POLARITY DOT ON CT
MUST POINT TOWARDS
INCOMING LINE

CT TWISTED LEADS
C/W HIGH VOLTAGE
SLEEVING
CUSTOMER MUST FASTEN CT TO
POWER WIRE WITH TWO 1/4*
NYLON WRAPS TO PREVENT
MOVEMENT DURING OPERATION

TOP VIEW DETAIL

SIDE VIEW DETAIL

SIDE VIEW DETAIL

Figure 8: Typical CT Mounting

3.7.2 CT Polarity

The CT has a polarity that must be correct for the starter to correctly measure Watts, kW Hours, Power Factor, and for the Power and TruTorque motor control functions to operate properly.

Each CT has a dot on one side of the flat surfaces. This dot, normally white in color, must be facing in the direction of the line.

CT1 must be on Line L1, CT2 must be on Line L2, CT3 must be on Line L3.

3.7.3 Zero Sequence Ground Fault Current Transformer

The Zero Sequence Ground Fault CT can be installed over the three phase conductors for sensitive ground current detection or for use with high resistance grounded systems.

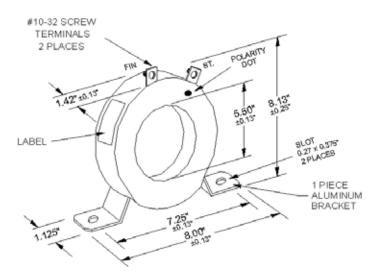


Figure 9: BICT 2000/1-6 Mechanical Dimensions

The correct installation of the current transformer on the motor leads is important. The shield ground wire should also be passed through the CT window if the motor conductors use shielded cable. Otherwise, capacitive coupling of the phase current into the cable shield may be measured as ground fault current. See Figure 10 below for proper installation.

₩ NOTE: Power cable must be covered with voltage rated sleeving/tubing extending a minimum of 3" past both sides of the CT. See Figure 8 for sleeve installation.

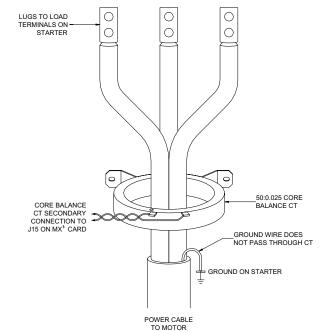
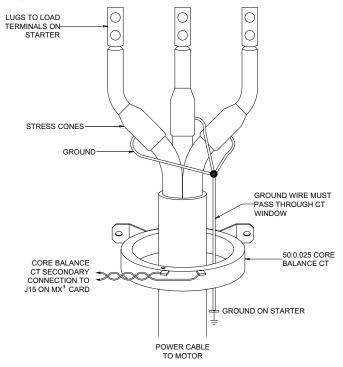
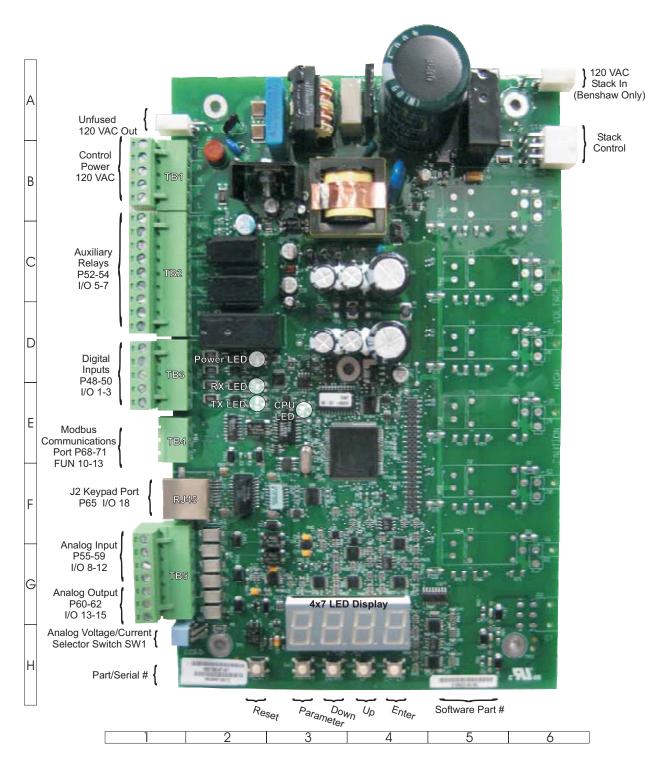
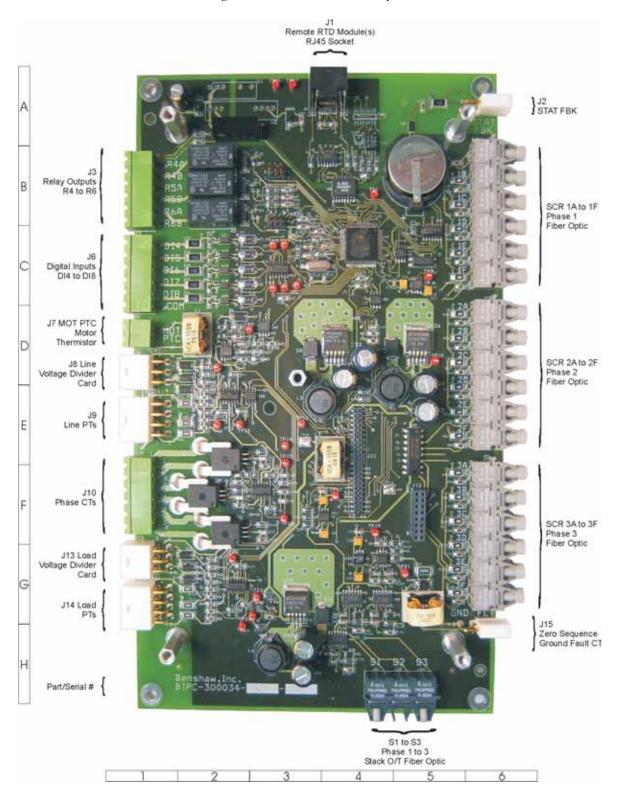



Figure 10: Zero Sequence CT Installation Using Unshielded Cable



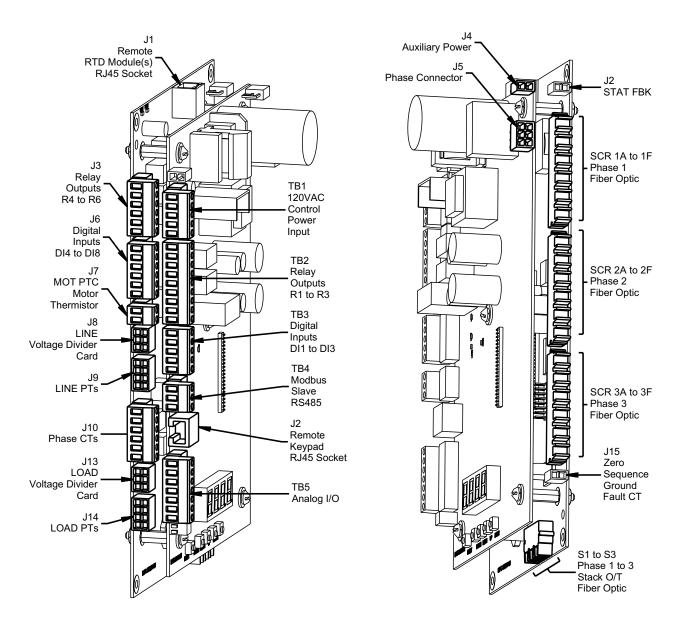
MVRMX³ Control Card Layout

3.8 MVRMX³ Control Card Layout


Figure 12: MVRMX³ Control Card Layout

MVRMX³ I/O Card Layout

3.9 MVRMX³ I/O Card Layout

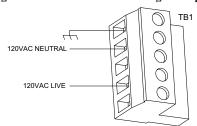

Figure 13: MVRMX³ I/O Card Layout

MVRMX³ Terminal Block Layout

3.10 MVRMX³ Terminal Block Layout

Figure 14: MVRMX³ Terminal Block Layout

Control Wiring


3.11 Control Wiring

3.11.1 Control Power

The 120VAC control power is supplied to TB1. The connections are as follows:

- 1 Ground
- 2 Neutral
- 3 Neutral
- 4 Line (120VAC)
- 5 Line (120VAC)

Figure 15: Control Power Wiring Example

3.11.2 Output Relays


TB2 is for output relays R1, R2 and R3. These relays connect as follows:

- 1 NO1: Relay 1 normally open
- 2 RC1: Relay 1 common
- 3 NC1: Relay 1 normally closed
- 4 NO2: Relay 2 normally open
- 5 RC2: Relay 2 common
- 6 NC2: Relay 2 normally closed
- 7 NO3: Relay 3 normally open
- 8 RC3: Relay 3 common
- 9 NC3: Relay 3 normally closed

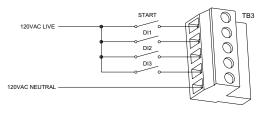
Terminal block J3 is for output relays R4, R5 and R6. These relays connect as follows:

- 1 R4A: Relay 4 common
- 2 R4B: Relay 4 open
- 3 R5A: Relay 5 common
- 4 R5B: Relay 5 open
- 5 R6A: Relay 6 common
- 6 R6B: Relay 6 open

Figure 16: Relay Wiring Examples

See Also Relay Output Configuration (I/O 10-15) on page 91.

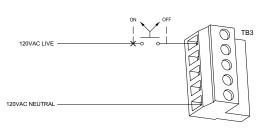
3.11.3 Digital Input

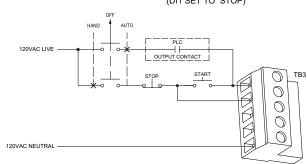

TB3 is for digital inputs Start, DI1, DI2 and DI3. These digital inputs use 120VAC. These digital inputs connect as follows:

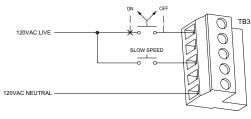
- 1 Start: Start Input
- 2 DI1: Digital Input 1
- 3 DI2: Digital Input 2
- 4 DI3: Digital Input 3
- 5 Com: 120VAC neutral

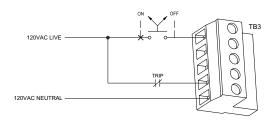
Terminal block J6 is for digital inputs DI4 to DI8. These digital inputs use 120VAC. These digital inputs connect as follows:

- 1 DI4: Digital input 4
- 2 DI5: Digital input 5
- 3 DI6: Digital input 6
- 4 DI7: Digital input 7
- 5 DI8: Digital input 8
- 6 Com: 120VAC neutral


Figure 17: Digital Input Wiring Examples


DIGITAL INPUT WIRING


3-WIRE START / STOP BUTTONS (DI1 SET TO STOP)


2-WIRE ON / OFF SELECTOR SWITCH

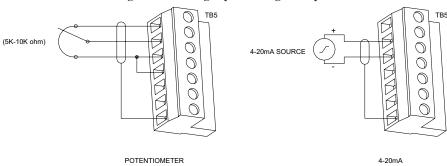
HAND / OFF / AUTO SELECTOR SWITCH (DI1 SET TO STOP)

SLOW SPEED CONTROL BUTTON (DI2 SET TO SSPD - SLOW SPEED)

EXTERNAL TRIP INPUT (DI3 SET TO FL - FAULT LOW)

See Also Digital Input Configuration (I/O 01-08) on page 90.

3.11.4 Analog Input


The analog input can be configured for voltage or current loop. The input is shipped in the voltage loop configuration unless specified in a custom configuration. Below TB5 is SW1-1. When the switch is in the on position, the input is current loop. When off, it is a voltage input. The control is shipped with the switch in the off position.

₩ NOTE: The analog input is a low voltage input, maximum of 15VDC. The input will be damaged if control power (115VAC) or line power is applied to the analog input.

The terminals are as follows:

- 1) +10VDC Power (for POT)
- 2) + input
- 3) input
- 4) common
- 7) shield

Figure 18: Analog Input Wiring Examples

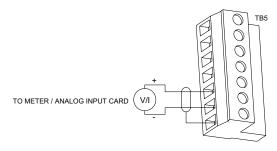
See Also Analog Input (I/O 16-20) on page 92.

Starter Type (FUN 07) on page 103.

Theory of Operation section 7.11, Phase Control on page 145.

Theory of Operation section 7.12, Current Follower on page 145.

3.11.5 Analog Output


The analog output can be configured for Voltage or Current loop. The output is shipped in the Voltage loop configuration unless specified in a custom configuration. Below TB5 is SW1-2. When the switch is in the off position, the output is current. When on, it is a Voltage loop output. The control is shipped with the Switch on.

***** NOTE:** The analog output is a low voltage output, maximum of 15VDC. The output will be damaged if control power (115VAC) or line power is applied to the analog output.

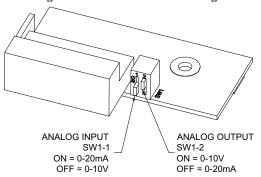
The terminals are as follows:

- 5) analog output
- 6) common
- 7) shield

Figure 19: Analog Output Wiring Example

See Also

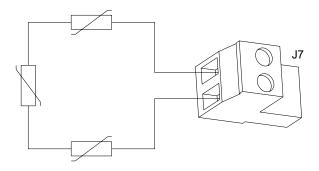
Analog Output (I/O 21-23) on page 94.


3.11.6 SW1 DIP Switch

The SW1 DIP switch on the card changes the analog input and analog output between 0-10V or 0-20mA. The picture below shows how to adjust the switch to select the desired signal.

3.11.7 Motor PTC

Terminal block J7 is for a PTC (positive temperature co-efficient) motor thermistor. This input is designed to use standard DIN 44081 or DIN 44082 thermistors. The specifications of the input are as follows;


Figure 20: SW1 DIP Switch Settings

- Trip resistance 3.5K, ± 300 Ohms
- Reset resistance 1.65K, ± 150 Ohms
- Open terminal voltage is 15V
- PTC voltage at 4Kohms = 8.55v. (>7.5V)
- Response time adjustable between 1 and 5 seconds
- Maximum cold resistance of PTC chain = 1500 Ohms

An example of the thermistor wiring is shown below in Figure 21.

Figure 21: PTC Thermistor Wiring

See Also

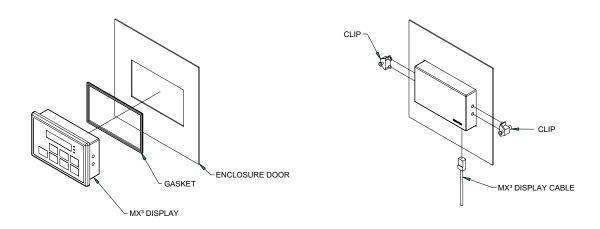
Motor PTC Trip Time (PFN 27) on page 86.

3.11.8 RTD Module Connector

Connector J1 is for the connection of Benshaw Remote RTD Modules. These modules can be mounted at the motor to reduce the length of the RTD leads. The connector is a standard RJ-45. The wires connect as follows;

- 4 B(+)
- 5 A(-)
- 8 common

Remote LCD Keypad/Display


3.12 Remote LCD Keypad/Display

The display has a NEMA 13 / IP65 service rating. The display is available in 2 versions, a small display as P/N KPMX3SLCD and large display as P/N KPMX3LLCD.

3.12.1 Remote Display

The LCD keypad is mounted remotely from the MX^3 Control via a straight through display cable which connects between the MX^3 RJ45 terminal and remote display's RJ45 terminal.

Figure 22: Mounting Remote Keypads

3.12.2 Display Cutout

Figure 23: Small Display Keypad Mounting Dimensions Part #: KPMX3SLCD

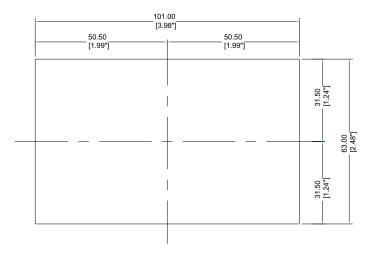
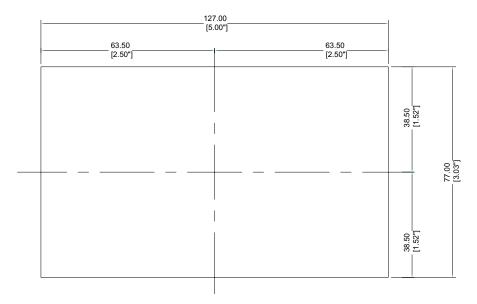



Figure 24: Large Display Keypad Mounting Dimensions Part # : KPMX3LLCD

3.12.3 Installing Display

The remote display is installed as follows:

- Install the gasket onto the display.
- Insert the display through the door cutout.
- Insert the mounting clips into the holes in each side of the display.
- Tighten the mounting clips until they hold the display securely in place. (Torque requirements are 0.7 NM or 6.195 in lbs).
- Plug the cable into the display connector on the MX³ card. See Figure 12 Control Card Layout on page 28 for the connector location.
- Route the cable through the enclosure to the display. Observe the wiring considerations as listed in Section 3.4.3 on page 21.
- Plug the other end of the cable into the LCD display.

RTD Module Installation

3.13 RTD Module Installation

3.13.1 Location

The mounting location for the Remote RTD Module should be chosen to give easy access to the RTD wiring, control terminals and indicator LEDs as well as providing a location to mount the power supply. The Remote RTD Module is specifically designed to be mounted close to the equipment it is monitoring. This eliminates long RTD wire lengths which save time and money on installation and wiring. The Benshaw Remote RTD Module is designed to mount on industry standard 35mm wide by 7.5mm deep DIN rail.

Figure 25: Remote RTD Module Mechanical Layout

3.13.2 Modbus Address

Set the rotary switch on the top of the Remote RTD Module to the desired Modbus address. Up to 2 modules can be connected to the MVRMX³ starter. The address set by the rotary switch must match the setting in RTD 01 or RTD 02. For example, setting both the rotary switch and RTD 01 to 16 would make the connected module be module #1. The connected RTDs would then represent #1 to #8 in the RTD programming.

3.13.3 Power Connections

The 24VDC power source is connected to the following terminals.

- 24VDC-: Negative connection to 24VDC power supply
- 24VDC+: Positive connection to 24VDC power supply
- "//": Chassis ground connection

3.13.4 RS-485 Communication

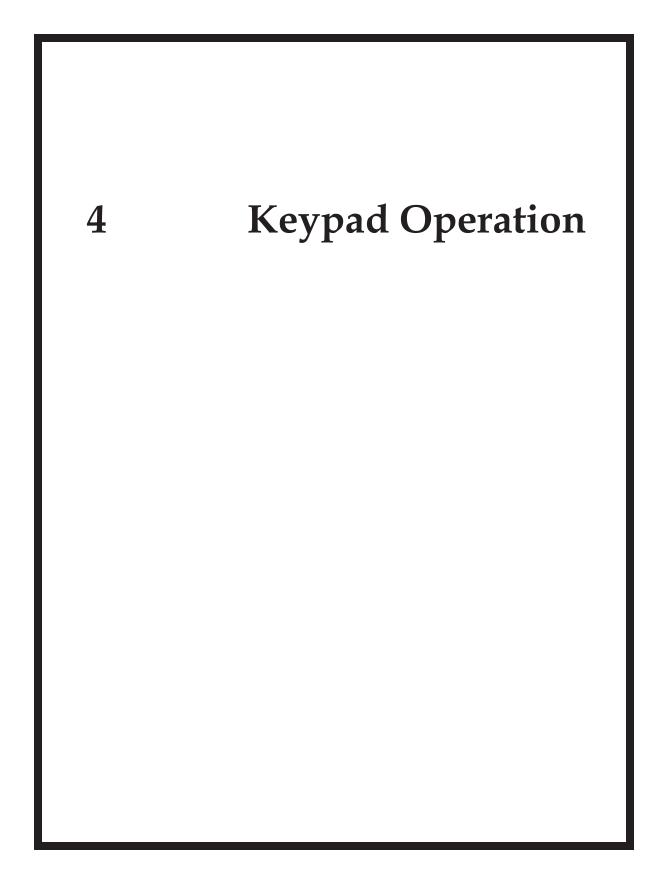
The RS-485 communications wiring should use shielded twisted pair cable. The shield should only be terminated at one end. The connections are as follows:

MX RJ45	Module	Description
pin 5	A(-)	RS-485 negative communications connection
pin 4	B(+)	RS-485 positive communications connection
pin 8	Com	RS-485 common connection

3.13.5 RTD Connections

Each Remote RTD Module has connections for up to 8 RTDs. The terminals for the RTD wires are as follows:

- R- RTD return wire
- C- RTD compensation wire
- H- RTD hot wire


Each RTD is connected to the three terminals with the common number. For example, RTD number 5 connects to the terminals numbered 5R, 5C and 5H.

RTD1 RTD2 RTD3 RTD4 2H 2O 2R (SHLD) 3H 3O 3R (GND) PIN5(BLU/WHT) REMOTE RTD MODULE PIN4(BLU) RTD MODULE CABLE SPR-100P PIN8(BRN) COM) RTD CONNECTOR ON MX3 STARTER `**⊚**(R STATUS ∭R (G) -24V)COM (+24V) DC (5H) (5C) (5R) 6H 6C 6R (SHLD) 7H 7C 7R (8H) (8C) (8R) ~~ m (-)(+) ww RTD5 RTD6 RTD7 RTD8 POWER SUPPLY TO 120 VAC

Figure 26: Remote RTD Module Wiring

3.13.6 RTD Temperature vs. Resistance

Temper	Temperature		°C	°F	100Ω Pt
°C	°F	(DIN 43760)	100	212	138.50
-50	-58	80.13	110	230	142.29
-40	-40	84.27	120	248	146.06
-30	-22	88.22	130	266	149.82
-20	-4	92.16	140	284	153.58
-10	14	96.09	150	302	157.32
0	32	100.00	160	320	161.04
10	50	103.90	170	338	164.76
20	68	107.79	180	356	168.47
30	86	111.67	190	374	172.46
40	104	115.54	200	392	175.84
50	122	119.39	210	410	179.51
60	140	123.24	220	428	183.17
70	158	127.07	230	446	186.82
80	176	130.89	240	464	190.45
90	194	134.70	250	482	194.08

Introduction

4.1 Introduction

The MX³ has a 2x16 character, back-lit LCD display/keypad that is mounted remotely from the MX³ control card.

The remote keypad is NEMA 13 / IP65 when mounted directly on the door of an enclosure with the correct gasket.

Figure 27 - Remote LCD Keypad

Description of the LEDs on the Keypad

4.2 Description of the LEDs on the Keypad

 $The \ keypad \ provides \ three \ LED \ indicators \ in \ addition \ to \ the \ 2x16 \ character \ display. \ The \ LEDs \ provide \ starter \ status \ information.$

LED State Indication On Stopped STOP Flashing Faulted On Running and up-to-speed RUN Flashing Running and not up-to-speed (ramping, decelerating, braking etc). ALARM Flashing Alarm condition exists. If condition persists, a fault occurs.

Table 12: Remote Keypad LED Functions

NOTE: By default, the [STOP] key is always active, regardless of selected control source (Local Source and Remote Source parameters). It may be disabled though using the Keypad Stop Disable (I/O 26) parameter. For more information refer to the Keypad Stop Disable (I/O 26) parameter on page 96.

Description of the Keys on the Remote LCD Keypad

4.3 Description of the Keys on the Remote LCD Keypad

Table 13: Function of the Keys on the LCD Keypad

Key	Function
start	 This key causes the starter to begin the start sequence. The direction is dependent on wiring and phase selection. In order for this key to work, the Local Source (QST 04) parameter must be set to "Keypad".
lack	 Increase the value of a numeric parameter. Select the next value of an enumerated parameter. It scrolls forward through a list of parameters within a group (when the last parameter is displayed, it scrolls to the beginning of the list). When a list of faults is displayed, it moves from one fault to the next. When a list of events is displayed, it moves from one event to the next. When the starter is in the Operate Mode, pressing [UP] allows you to change which group of meter values is monitored. Decrease the value of a numeric parameter.
	 Select the previous value of an enumerated parameter. It scrolls backward through a list of parameters within a group (when the first parameter is displayed, it scrolls to the end of the list). When a list of faults is displayed, it moves from one fault to the previous fault. When a list of events is displayed, it moves from one event to the previous event. When the starter is in the Operate Mode, pressing [DOWN] allows you to change which group of meter values is monitored.
	 When editing a numeric parameter, the [LEFT] arrow key moves the cursor one digit to the left. If cursor is already at the most significant digit, it returns to the least significant digit on the right. When in Menu mode, the [LEFT] arrow allows groups to be scrolled through in the opposite direction of the [MENU] Key.
enter	 Stores the change of a value. When in Fault History, [ENTER] key scrolls through information logged when a fault occurred. When in Event History, [ENTER] key scrolls through information logged when an event occurred. When an alarm condition exists, [ENTER] scrolls through all active alarms.
menu	 [MENU] scrolls between the operate screen and the available parameter groups. When viewing a parameter, pressing [MENU] jumps to the top of the menu. When a parameter is being edited and [MENU] is pressed, the change is aborted and the parameter's old value is displayed.
stop reset	 The [STOP/RESET] key halts the operation of the starter (Stop Key). If a fault has occurred, the [STOP/RESET] key is used to clear the fault (Reset Key). The [STOP/RESET] key always halts the operation of the starter if the control source is set to "Keypad". If the Control Source (QST 04/QST 05) is not set to "Keypad", the [STOP/RESET] key may be disabled using the Keypad Stop Disable (I/O 26) parameter.

Alphanumeric Display

4.4 Alphanumeric Display

The remote LCD keypad and display uses a 32-character alphanumeric LCD display. All starter functions can be accessed by the keypad. The keypad allows easy access to starter programming with parameter descriptions on the LCD display.

4.4.1 Power Up Screen

On power up, the software part numbers are displayed for a few seconds. Pressing any key immediately changes the display to the operate screen.

810023-02-01 810024-01-01

4.4.2 Operate Screen

The operate screen is the main screen. The operate screen is used to indicate the status of the starter, if it's running, what state it's in, and display the values of Meter 1 and Meter 2, which are selectable.

The Operate Screen is divided into five sections:

- Sections A and B display status information
- Sections C and D display the meters selected by the Meter 1 and 2 parameters, see FUN 01, 02
- · Section S displays the source for the start command

Figure 28: Operate Screen

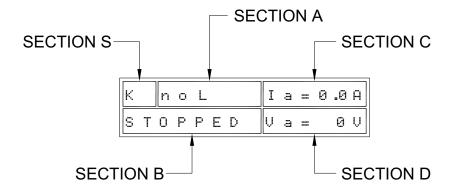


Table 14: Operate Screen Section A

Display	Description
NoL	L1, L2, L3 not present
Ready	Starter ready to run
Alarm	A fault condition is present. If it continues, a fault occurs
Run	Starter is running

Table 15: Operate Screen Section B

Display	Description		
Stopped	Starter is stopped and no Faults		
Fault	Starter tripped on a Fault		
Heater	Starter is on and heating motor		
Kick	Starter is applying kick current to the motor		
Accel	Starter is accelerating the load		
Kick 2	Starter is applying kick current to the motor in Ramp 2		
Accel 2	Starter is accelerating the load in Ramp 2		
Run	Starter is in Run mode and Ramp Time has expired		
UTS	Starter is Up To Speed		
Control	Phase Control or Current Follower mode		
Decel	Starter is decelerating the load		
Wye	In Wye-delta control indicates motor is accelerating in Wye mode		
Slow Spd Fwd	Preset slow speed forward		
Slow Spd Rev	Preset slow speed reverse		
Braking	DC Injection Braking.		
PORT	Power Outage Ride Through		

Table 16: Operate Screen Section S

Display	Description
K	Keypad Control
T	Terminal Block Wiring Control
S	Serial Communication Connection Control

4.4.3 Parameter Group Screens

From the operate screen, the parameter group screens are accessed by pressing either the menu or the left arrow keys. The parameter group screens display the different parameter groups; QST, CFN, PFN, I/O, RTD, FUN, FL1, E01.

MMM: PPPPPPPPPPPPPMI UUUUUUUUUUU

MMM: = Parameter Group
MI: = Menu Index
PPP: = Parameter Name

VVV: = Parameter Value and Units

Refer to Chapter 5 for a listing of the parameters and their ranges.

4 - KEYPAD OPERATION

4.4.4 **Meter Pages**

Although any meter may be viewed by changing the two meter parameters (FUN 01, FUN 02), there are 19 "Meter Pages" that are easily accessed to view all of the meter information. These meter pages are scrolled through by pressing the [UP] or [DOWN] down arrows from the operate screen.

Current II I1= 0.0 II		
Voltage V2	2=	0 V
V1= 0 V3		ØV
MWatt Hour		0
kWatt Hour	·	0
Watts		0
VA		0
Motor PF	= 0.0	0
VARS		0
TruTorque		0
Power		0%
Overload		0%
Curr Imbal	= 0,	.0%
RS Gnd Cur		0%
ZS Gnd Cur	= 0.	.ØA
LST ST Tim	= xx.	.XS
PK ST Cur	= xx.	.×Α
Frequency	= 0	.ØH
Phase	= nol	

Run Days Run Hours	
Analog In Analog Ou	
Starts	=XXXX
	Ts= Tb=
1= Off 2= Off	3= Off 4= Off
5= 0ff 6= 0ff	7= Off 8= Off
9= Off 10= Off	
13= Off 14= Off	
hhemme: mm/dd/	

₩ NOTE:

00:00 - 23:59

Run Hours Run Days 0-2730 days or 7.5 years

0 - 999kWatt Hours MWatt Hours 0 – 9999 Starts 0 - 65535RS Gnd Cur % motor FLA

4.4.5 Fault Log Screen

Information regarding each fault is available through the remote MX³ LCD display.

FL#: Fault ## NNNNNNNNNNNNN

FL#: = Fault Log Number. FL1 is the most recent fault and FL9 is the oldest fault.

Fault ## = Fault Code

NNN... = Fault Name, or the condition when the fault occurred.

Press [MENU] until you get to the FL1 parameter.

Pressing the [UP] and [DOWN] keys navigates through older and newer faults in the log.

When you get to your fault on the screen begin pressing the [ENTER] key repeatedly. This will rotate through the steps below to show the conditions the starter was in when the fault occurred.

Enter Step	
1	Fault Description.
2	Status when the fault occurred, Run, Stopped, Accel. etc.
3	The L1 current at the time of the fault.
4	The L2 current at the time of the fault.
5	The L3 current at the time of the fault.
6	L1-2 voltage at the time of the fault.
7	L2-3 voltage at the time of the fault.
8	L3-1 voltage at the time of the fault.
9	kW at the time of the fault.
10	Frequency at the time of the fault.
11	Run time since last run time reset.

4.4.6 Fault Screen

When a Fault occurs, the main screen is replaced with a fault screen. The screen shows the fault number and the name of the fault. The main status screen is not shown until the fault is reset.

When a fault occurs, the STOP LED flashes.

Fault ## Fault Name

 $\mbox{\em MOTE}$: For a list of the Faults, refer to Appendix C - Fault Codes on page 183.

4.4.7 Event Recorder

An event is anything that changes the present state of the starter. Examples of events include a start, a stop, an overload alarm or a fault. The event recorder stores the last 99 events.

E##: Event ### Event

Press [MENU] until you get to the E01 parameter.

Pressing [UP] or [DOWN] will scroll through the last 99 events and displays the event or fault code on top, and the event or fault that changed the starter's state on the bottom.

Pressing [ENTER] gives the starter state condition at the time of event.

Press [ENTER] again to give you the time of the event.

Press [ENTER] again to give you the date that the event occurred.

NOTE: After pressing [ENTER] you can shift through all the different starter states, times and dates by using the [UP] and [DOWN] arrows.

4 - KEYPAD OPERATION

4.4.8 Lockout Screen

When a lockout is present, one of the following screens will be displayed. The main status screen is not shown until the lockout is cleared.

The overload lockout displays the overload content and the time until reset if an overload occurs.

Overload Lockout
96% xx.xx

The stack over temperature lockout will be displayed if a stack over temperature is detected.

Stack Overtemp Lockout

The control power lockout will be displayed if the control power is not within specifications.

Control Power Lockout

The disconnect open lockout will be displayed if a digital input is programmed to "disconnect" and the input is not on.

Disconnect Open Lockout

The time between starts lockout displays the time until the next start is allowed when PFN 21 is programmed.

Time btw Starts Lockout XX:XX

The backspin timer lockout displays the time until the next restart when PFN 20 is programmed.

Backspin Timer Lockout XX:XX

The starts per hour lockout displays the time until the next start is allowed when PFN 22 is programmed.

Starts per Hour Lockout XX:XX

The motor PTC lockout is displayed when the motor thermistor is overheated or defective.

Motor PTC Lockout

The RTD lockout displays the hottest RTD that tripped the starter.

RTD Lockout RTD##= XXXC

The communications loss is displayed when the starter loses communication with the remote RTD modules.

RTD Lockout RTD##commloss

The open lockout is displayed when the RTD module senses an open RTD.

RTD Lockout RTD##= Open

The short lockout is displayed when the RTD module senses a shorted RTD.

RTD Lockout RTD##= Shrt

₩ NOTE: XX:XX is the time remaining until the lockout releases.

4.4.9 Alarm Screen

When an alarm is present, the word "Alarm" is displayed on the operate screen. Pressing the [ENTER] key displays more information about the alarm.

Alarm ## Alarm Name

Procedure for Setting Data

4.5 Procedure for Setting Data

Select a parameter that is to be changed. To change Motor FLA from 10 Amps to 30 Amps:

From the main screen:

T Ready Ia= 0.0A Stopped Va=4160V

Press [MENU] key and the display shows QST (Quick Start) screen.

QST: Jump Code 00 1

Press [UP] key once to Motor FLA (QST 01).

QST: Motor FLA 01 10 Amp

Press [ENTER] key once, the cursor starts to flash in the one's place.

QST: Motor FLA 01 1<mark>0</mark> Amp

Press [LEFT] key once, the cursor flashes in the ten's place.

QST: Motor FLA 01 **1**0 Amp

Press [UP] arrow to increase the value, for a value of 30, press twice.

QST: Motor FLA 01 **3**0 Amp

Press [ENTER] to store the value.

QST: Motor FLA 01 30 Amp

Press [UP] arrow to change another parameter in QST.

Press [MENU] to change another parameter in another group.

Press [LEFT] arrow to go back to the main screen.

Jump Code

4.6 Jump Code

At the beginning of each parameter group, there is a Jump Code parameter. By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter within that group.

Restoring Factory Parameter Settings

4.7 Restoring Factory Parameter Settings

Go to the FUN group by pressing [MENU]. Scroll through to Miscellaneous Commands (FUN 22) and press [ENTER]. Now set to "Factory Rst" and press [ENTER]. The display will return to "None" but the parameters will be reset to the factory defaults.

₩ NOTE: If a factory reset is performed, the following minimum parameters will need to be programmed so a F47 - "Stack Overtemp" does not occur:

FUN05 - Rated RMS Voltage (set to specified equipment rating)

FUN03 - CT Ratio

I/O01 - 08 - Digital Inputs

I/O09 - 15 - Relay Outputs

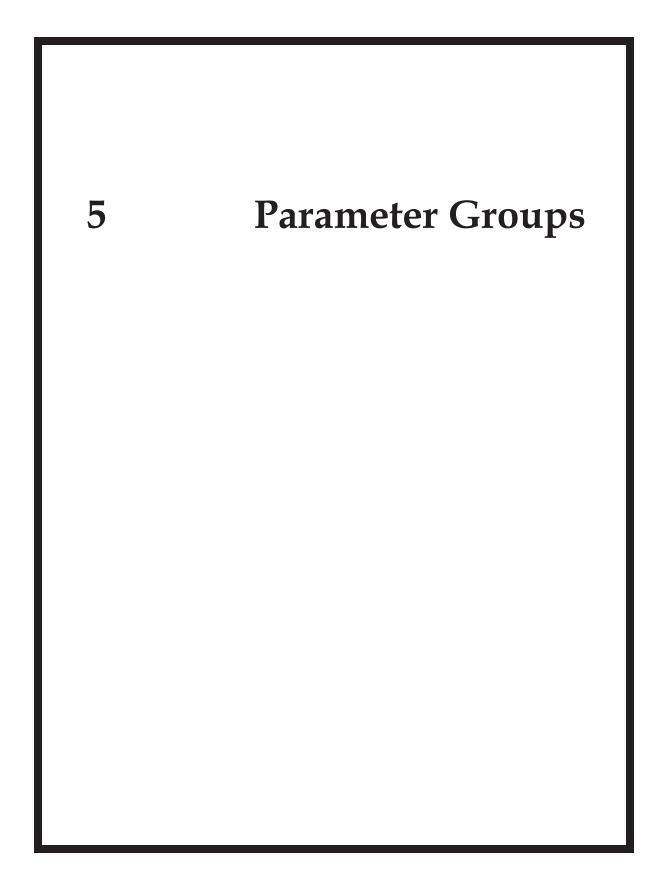
₩NOTE: You must consult the wiring schematic for other digital inputs and relay output configuration.

Resetting a Fault

4.8 Resetting a Fault

To reset from a fault condition, press [RESET].

Emergency Overload Reset


4.9 Emergency Overload Reset

To perform an emergency overload reset, press [RESET] and [DOWN] pushbuttons together. This sets the motor thermal overload content to "0".

LED Display

4.10 LED Display

The card mounted LED display can be used to access most of the parameters when the standard remote mounted display is not connected. The LED parameter numbers (Pxx) are shown in the parameter table, see Chapter 5.

Introduction

5.1 Introduction

The MVRMX³ incorporates a number of parameters that allow you to configure the starter to meet the special requirements of your particular application.

The parameters are divided into groups of related functionality, and within the groups the parameters are identified by a short, descriptive name. They are numbered by the group name followed by an index within the group.

This chapter lists all of the parameters and their possible values.

5.2 LCD Display Parameters

The parameters are subdivided into six groups. The groups are QST (Quick Start), CFN (Control Functions), PFN (Protection Functions), I/O (Input/Output Functions), RTD (Resistance Temperature Device), FUN (Function), FL1(Fault Log) and E01 (Event Recorder).

The Quick Start Group provides a collection of the parameters that are most commonly changed when commissioning a starter. Many of the parameters in the Quick Start group are duplicates of the same parameters in other groups.

The following shows the menu structure for the LCD display as well as the text that is displayed for the parameters on the display.

If the LCD is not connected, most parameters shown on the LED display will turn on when LCD is unplugged.

5.2.1 Quick Start Group

Group	LED	Display	Description	Setting Range	Units	Default	Page
QST 00		Jump Code	Jump to Parameter	1 to 9		1	58
QST 01	P1	Motor FLA	Motor FLA	1 to 6400	RMS Amps	10	58
QST 02	P2	Motor SF	Motor Service Factor	1.00 to 1.99		1.15	58
QST 03	Р3	Running OL	Motor Overload Class Running	Off, 1 to 40		10	59
QST 04	P4	Local Src	Local Source	Keypad Terminal Serial		- Terminal	59
QST 05	P5	Remote Src	Remote Source				60
QST 06	P6	Init Cur 1	Initial Current 1	50 to 600	%FLA	100	61
QST 07	P7	Max Cur 1	Maximum Current 1	100 to 800	%FLA	600	61
QST 08	P8	Ramp Time 1	Ramp Time 1	0 to 300	Seconds	15	62
QST 09	P9	UTS Time	Up To Speed Time/Transition time	1 to 900	Seconds	20	62

5.2.2 Control Function Group

Group	LED	Display	Parameter	Setting Range	Units	Default	Page
CFN 00		Jump Code	Jump to Parameter	1 to 27		1	63
CFN 01	P10	Start Mode	Start Mode	Voltage Ramp Current Ramp TT Ramp Power Ramp Tach Ramp		Current Ramp	63
CFN 02	P8	Ramp Time 1	Ramp Time 1	0 to 300	Seconds	15	64
CFN 03	P6	Init Cur 1	Initial Motor Current 1	50 to 600	%FLA	100	64
CFN 04	P7	Max Cur 1	Maximum Motor Current 1	100 to 800	%FLA	600	65
CFN 05	P24	Ramp Time 2	Ramp Time 2	0 to 300	Seconds	15	65
CFN 06	P22	Init Cur 2	Initial Motor Current 2	50 to 600	%FLA	100	65
CFN 07	P23	Max Cur 2	Maximum Motor Current 2	100 to 800	%FLA	600	66
CFN 08	P11	Init V/T/P	Initial Voltage/Torque/Power	1 to 100	%	25	66
CFN 09	P12	Max T/P	Maximum Torque/Power	10 to 325	%	105	67
CFN 10		Accel Prof	Acceleration Ramp Profile	Linear Squared S-Curve		Linear	67
CFN 11	P13	Kick Lvl 1	Kick Level 1	Off, 100 to 800	%FLA	Off	68
CFN 12	P14	Kick Time 1	Kick Time 1	0.1 to 10.0	Seconds	1.0	69
CFN 13	P25	Kick Lvl 2	Kick Level 2	Off, 100 to 800	%FLA	Off	69
CFN 14	P26	Kick Time 2	Kick Time 2	0.1 to 10.0	Seconds	1.0	69
CFN 15	P15	Stop Mode	Stop Mode	Coast Volt Decel TT Decel DC Brake		Coast	70
CFN 16	P16	Decel Begin	Decel Begin Level	100 to 1	%	40	70
CFN 17	P17	Decel End	Decel End Level	99 to 1	%	20	71
CFN 18	P18	Decel Time	Decel Time	1 to 180	Seconds	15	71
CFN 19		Decel Prof	Decel Ramp Profile	Linear Squared S-Curve		Linear	72
CFN 20	P19	Brake Level	DC Brake Level	10 to 100	%	25	72
CFN 21	P20	Brake Time	DC Brake Time	1 to 180	Seconds	5	73
CFN 22	P21	Brake Delay	DC Brake Delay	0.1 to 3.0	Seconds	0.2	73
CFN 23	P27	SSpd Speed	Slow Speed	Off, 1 – 40	%	Off	73
CFN 24	P28	SSpd Curr	Slow Speed Current Level	10 to 400	% FLA	100	74
CFN 25	P29	SSpd Timer	Slow Speed Time/Limit	Off, 1 to 900	Seconds	10	74
CFN 26	P30	SSpd Kick Curr	Slow Speed Kick Level	Off, 100 to 800	% FLA	Off	75
CFN 27	P31	SSpd Kick T	Slow Speed Kick Time	0.1 to 10.0	Seconds	1.0	75

5 - PARAMETER GROUPS

5.2.3 Protection Group

Group	LED	Display	Parameter	Setting Range	Units	Default	Page
PFN 00		Jump Code	Jump to Parameter	1 - 35		1	76
PFN 01	P32	Over Cur Lvl	Over Current Trip Level	Off, 50 - 800	%FLA	Off	76
PFN 02	P33	Over Cur Time	Over Current Trip Delay Time	Off, 0.1 - 90.0	Seconds	0.1	76
PFN 03	P34	Undr Cur Lvl	Under Current Trip Level	Off, 5 - 100	%FLA	Off	77
PFN 04	P35	Undr Cur Time	Under Current Trip Delay Time	Off, 0.1 - 90.0	Seconds	0.1	77
PFN 05	P36	Cur Imbl Lvl	Current Imbalance Trip Level	Off, 5 - 40	%	15	78
PFN 06		Cur Imbl Time	Current Imbalance Trip Time	0.1 - 90	Seconds	10	78
PFN 07	P37	Resid GF Lvl	Residual Ground Fault Trip Level	Off, 5 - 100	%FLA	Off	79
PFN 08		ZS GF Lvl	Zero Sequence Ground Fault Trip Level	Off, 1.0 - 25	Amps	Off	80
PFN 09		Gnd Flt Time	Ground Fault Trip Time	0.1 - 90.0	Seconds	3.0	80
PFN 10	P38	Over Vlt Lvl	Over Voltage Trip Level	Off, 1 - 40	%	Off	81
PFN 11	P39	Undr Vlt Lvl	Under Voltage Trip Level	Off, 1 - 40	%	Off	81
PFN 12	P40	Vlt Trip Time	Over/Under Voltage Trip Delay Time	0.1 - 90.0	Seconds	0.1	81
PFN 13		Ph Loss Time	Phase Loss Trip Time	0.1 - 5.0	Seconds	0.2	82
PFN 14		Over Frq Lvl	Over Frequency Trip Level	24 - 72	Hz	72	82
PFN 15		Undr Frq Lvl	Under Frequency Trip Level	23 - 71	Hz	23	82
PFN 16		Frq Trip Time	Frequency Trip Time	0.1 - 90.0	Seconds	0.1	83
PFN 17		PF Lead Lvl	PF Lead Trip Level	Off, -0.80 lag to +0.01 lead		Off	83
PFN 18		PF Lag Lvl	PF Lag Trip Level	Off, -0.01 lag to +0.80 lead		Off	83
PFN 19		PF Trip Time	PF Trip Time	0.1 - 90.0	Seconds	10.0	83
PFN 20		Backspin Time	Backspin Timer	Off, 1 - 180	Minutes	Off	84
PFN 21		Time Btw St	Time Between Starts	Off, 1 - 180	Minutes	Off	84
PFN 22		Starts/Hour	Starts per Hour	Off, 1 - 6		Off	84
PFN 23	P41	Auto Reset	Auto Fault Reset Time	Off, 1 - 900	Seconds	Off	84
PFN 24	P42	Auto Rst Lim	Auto Fault Reset Count Limit	Off, 1 - 10		Off	85
PFN 25	P43	Ctrl Flt En	Controlled Fault Stop	Off, On		On	85
PFN 26		Speed Sw Time	Speed Switch Trip Time	Off, 1 - 250	Seconds	Off	85
PFN 27		M PTC Time	Motor PTC Trip Time	Off, 1 - 5	Seconds	Off	86
PFN 28	P44	Indep S/R OL	Independent Starting/Running Overload	Off, On		Off	86
PFN 29	P45	Starting OL	Motor Overload Class Starting	Off, 1 - 40		10	87
PFN 30		Running OL	Motor Overload Class Running	Off, 1 - 40		10	87
PFN 31	P46	OL H/C Ratio	Motor Overload Hot/Cold Ratio	0 - 99	%	60	88
PFN 32	P47	OL Cool Time	Motor Overload Cooling Time	1.0 - 999.9	Minutes	30	88
PFN 33		OL Alarm Lvl	Motor OL Alarm Level	1 - 100	%	90	89
PFN 34		OL Lock Lvl	Motor OL Lockout Level	1 - 99	%	15	89
PFN 35		OL Lock Calc	Motor OL Auto Lockout Level	Off, Auto		Off	89

5.2.4 I/O Group

Number	LED	Display	Parameter	Setting Range	Units	Default	Page
I/O 00		Jump Code	Jump to Parameter	1 to 27		1	90
I/O 01	P48	DI 1 Config	Digital Input #1 Configuration	Off Slow Spd Fwd		Stop	
I/O 02	P49	DI 2 Config	Digital Input #2 Configuration	Stop Slow Spd Rev Fault High Brake Disable		Off	
I/O 03	P50	DI 3 Config	Digital Input #3 Configuration	Fault Low Brake Enable		Off	
I/O 04		DI 4 Config	Digital Input #4 Configuration	Fault Reset Speed Sw NO		Off	
I/O 05		DI 5 Config	Digital Input #5 Configuration	Disconnect Speed Sw NC Inline Cnfrm		Off	90
I/O 06		DI 6 Config	Digital Input #6 Configuration	Bypass Cnfrm		Off	
I/O 07		DI 7 Config	Digital Input #7 Configuration	E OL Reset Local/Remote		Off	
I/O 08		DI 8 Config	Digital Input #8 Configuration	Heat Disable Heat Enable Ramp Select		Off	
I/O 09	P51	Dig Trp Time	Digital Fault Input Trip Time	0.1 to 90.0	Sec.	0.1	91
I/O 10	P52	R1 Config	Relay Output #1 Configuration	Off Shunt NFS		Fault FS	
I/O 11	P53	R2 Config	Relay Output #2 Configuration	Fault FS Ground Fault Fault NFS Energy Saver Running Heating		Off	
I/O 12	P54	R3 Config	Relay Output #3 Configuration	UTS Slow Spd Alarm Slow Spd Fwd		Off	91
I/O 13		R4 Config	Relay Output #4 Configuration	Ready Slow Spd Rev Locked Out Braking Overcurrent Cool Fan Ctl		Off	
I/O 14		R5 Config	Relay Output #5 Configuration	Undercurrent PORT OL Alarm Tach Loss		Off	
I/O 15		R6 Config	Relay Output #6 Configuration	Shunt FS		Off	
I/O 16	P55	Ain Trp Type	Analog Input Trip Type	Off Low Level High Level		Off	92
I/O 17	P56	Ain Trp Lvl	Analog Input Trip Level	0 to 100	%	50	92
I/O 18	P57	Ain Trp Tim	Analog Input Trip Delay Time	0.1 to 90.0	Seconds	0.1	93
I/O 19	P58	Ain Span	Analog Input Span	1 to 100	%	100	93
I/O 20	P59	Ain Offset	Analog Input Offset	0 to 99	%	0	94
I/O 21	P60	Aout Fctn	Analog Output Function	Off 0 - 200% Curr 0 - 800% Curr 0 - 150% Volt 0 - 150% OL 0 - 10 kW 0 - 100 kW 0 - 1 MW 0 - 10 MW 0 - 100% Ain 0 - 100% Firing Calibration		Off	94
I/O 22	P61	Aout Span	Analog Output Span	1 to 125	%	100	95
I/O 23	P62	Aout Offset	Analog Output Offset	0 to 99	%	0	95
I/O 24	P63	Inline Confg	Inline Configuration	Off, 1.0 to 10.0	Seconds	3.0	96
I/O 25	P64	Bypas Fbk Tim	Bypass / 2M Confirm	0.1 to 5.0	Seconds	2.0	96
I/O 26	P65	Kpd Stop	Keypad Stop Disable	Enabled, Disabled		Enabled	96
I/O 27	P66	Auto Start	Power On Start Selection	Disabled Power Fault Power Fault		Disabled	97

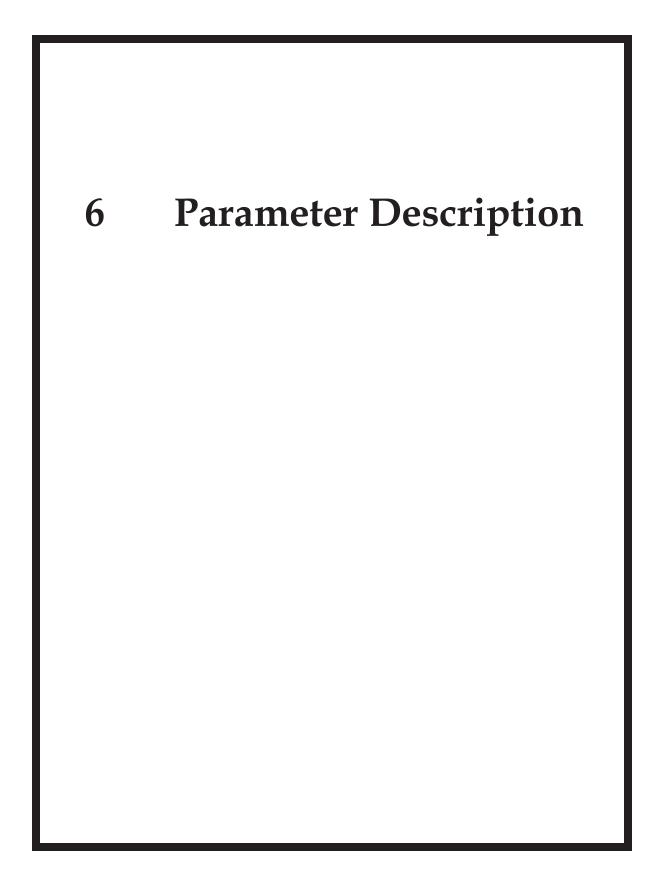
5 - PARAMETER GROUPS

5.2.5 RTD Group

Group	Display	Description	Setting Range	Units	Default	Page #
RTD 00	Jump Code	Jump to Parameter	1 - 29		1	97
RTD 01	RTDMod1 Addr	RTD Module #1 Address	Off, 16 - 23		Off	97
RTD 02	RTDMod2 Addr	RTD Module #2 Address	On, 10 - 23		On	98
RTD 03	RTD1 Group	RTD1 Group				
RTD 04	RTD2 Group	RTD2 Group				
RTD 05	RTD3 Group	RTD3 Group				
RTD 06	RTD4 Group	RTD4 Group				
RTD 07	RTD5 Group	RTD5 Group]	
RTD 08	RTD6 Group	RTD6 Group]	
RTD 09	RTD7 Group	RTD7 Group	Off]	
RTD 10	RTD8 Group	RTD8 Group	Stator			00
RTD 11	RTD9 Group	RTD9 Group	Bearing		Off	98
RTD 12	RTD10 Group	RTD10 Group	Other		1	
RTD 13	RTD11 Group	RTD11 Group				
RTD 14	RTD12 Group	RTD12 Group				
RTD 15	RTD13 Group	RTD13 Group]	
RTD 16	RTD14 Group	RTD14 Group			1	
RTD 17	RTD15 Group	RTD15 Group]	
RTD 18	RTD16 Group	RTD16 Group]	
RTD 19	Stator Alrm	Stator Alarm Level			200	98
RTD 20	Bearing Alrm	Bearing Alarm Level			200	98
RTD 21	Other Alrm	Other Alarm Level	1 - 200	C	200	99
RTD 22	Stator Trip	Stator Trip Level	1 - 200		200	99
RTD 23	Bearing Trip	Bearing Trip Level			200	99
RTD 24	Other Trip	Other Trip Level			200	99
RTD 25	RTD Voting	RTD Voting	Disabled, Enabled		Disabled	100
RTD 26	RTD Biasing	RTD Motor OL Biasing	Off, On		Off	100
RTD 27	RTD Bias Min	RTD Bias Minimum Level	0 - 198	С	40	100
RTD 28	RTD Bias Mid	RTD Bias Mid Point Level	1 - 199	С	130	101
RTD 29	RTD Bias Max	RTD Bias Maximum Level	105 - 200	С	155	101

5.2.6 Function Group

Number	LED	Display	Parameter	Setting Range	Units	Default	Page
FUN 00		Jump Code	Jump to Parameter	1 to 24		1	101
FUN 01	P71	Meter 1	Ave Current L1 Current L2 Current L3 Current Curr Imbal Ground Fault Ave Volts L1-L2 Volts L2-L3 Volts L3-L1 Volts Overload Power Factor Watts		Ave Current		
FUN 02		Meter 2	Meter 2	VA vars kW hours MW hours Phase Order Line Freq Analog Input Analog Output Run Days Run Hours Starts TruTorque % Power % Pk Accel Cur Last Start T Zero Sequence GF Stator Temp Bearing Temp Other Temp All Temp		Ave Volts	101
FUN 03	P78	CT Ratio	72:1, 96:1, 144:1, 288:1, 864:1, 2640:1, 3900:1, 5760:1, CT Ratio 8000:1, 14400:1, 28800:1, 50:5, 150:5, 250:5, 800:5, 2000:5, 5000:5		288:1	102	
FUN 04	P77	Phase Order	Input Phase Sensitivity Input Phase Sensitivity Insensitive ABC CBA Single Phase		Insens.	102	
FUN 05	P76	Rated Volts	Rated RMS Voltage	100, 110, 120, 200, 208, 220, 230, 240, 350, 380, 400, 415, 440, 460, 480, 500, 525, 575, 600, 660, 690, 800, 1000, 1140, 2200, 2300, 2400, 3300, 4160, 4600, 4800, 6000, 6600, 6900, 10.00K, 11.00K, 11.50K, 12.00K 12.47K, 13.20K, 13.80K	RMS Voltage	480	103
FUN 06	P75	Motor PF	Motor Rated Power Factor	-0.01 (Lag) to 1.00 (Unity)		-0.92	103
FUN 07	P74	Starter Type	Starter Type	Normal Inside Delta Wye-Delta Phase Ctl Curr Follow ATL		Normal	103


Number	LED	Display	Parameter	Setting Range	Units	Default	Page
FUN 08	P73	Heater Level	Heater Level Off, 1 to 40 %FLA		%FLA	Off	104
FUN 09	P72	Energy Saver	Energy Saver Off, On Seconds		Off	105	
FUN 10		PORT Flt Tim	P.O.R.T. Fault Time Off, 0.1 - 90.0 Seconds		Off	105	
FUN 11		PORT Flt Tim	P.O.R.T. Bypass Hold Time	Off, 0.1 - 5.0	Seconds	Off	105
FUN 12		PORT Recover	P.O.R.T. Recovery Method	Voltage Ramp Fast Recover Current Ramp Curr Ramp 2 Ramp Select Tach Ramp		Fast Recover	106
FUN 13		Tach FS Lvl	Tachometer Full Speed Voltage	1.00 - 10.00	Volts	5.00	106
FUN 14		Tach Los Tim	Tachometer Loss Time	0.1 - 90.0	Seconds	1.5	106
FUN 15		Tach Los Act	Tachometer Loss Action	Fault Current TruTorque KW		Fault	106
FUN 16	P70	Com Drop #	Communication Address 1 to 247		1	107	
FUN 17	P69	Com Baud rate	Communication Baud Rate	1200, 2400, 4800, 9600, 19200	bps	19200	107
FUN 18	P68	Com Timeout	Communication Timeout	Off, 1 to 120	Seconds	Off	107
FUN 19	P71	Com Parity	Communications Byte Framing	Even, 1 Stop Bit Odd, 1 Stop Bit None, 1 Stop Bit None, 2 Stop Bit		Even, 1 Stop	108
FUN 20	P80	Software 1	Software Part Number 1	Display Only			108
FUN 21		Software 2	Software Part Number 2	Display Only			108
FUN 22	P67	Misc Command	Miscellaneous Commands	None Reset RT Reset kWh Reflash Mode Store Parameters Load Parameters Factory Reset Std BIST Powered BIST		None	108
FUN 23		T/D Format	Time and Date Format	mm/dd/yy 12h mm/dd/yy 24h yy/mm/dd 12h yy/mm/dd 24h dd/mm/yy 12h dd/mm/yy 24h	mm/dd/yy 12h		109
FUN 24		Time	Time			Present Time	109
FUN 25		Date	Date			Present Date	109
FUN 26		Passcode	Passcode			Off	110

5.2.7 Fault Group

Group	Fault Number	Fault Description	Starter State	I1	12	13	V1	V2	V3	KW	Hz	Run Time	Page # 110 212	
-------	-----------------	----------------------	------------------	----	----	----	----	----	----	----	----	-------------	----------------	--

5.2.8 Event Log Group

Group Event Number	Event Condition	Time	Date	Page # 110 212
----------------------	-----------------	------	------	----------------------

6 - PARAMETER DESCRIPTION

Parameter Descriptions

6.1 Parameter Descriptions

The detailed parameter descriptions in this chapter are organized in the same order as they appear on the LCD display.

Each parameter has a detailed description that is displayed with the following format.

Parameter Name

MMM

LCD Display

MMM: Parameter MI Value

Range Parameter Value (Default: Constant)

OR **LCD**Keypad

Description The description of the function.

See Also Cross references to related parameters or other chapters.

Jump to Parameter

QST 00

LCD Display

QST: Jump Code 00 1

Description By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter

within that group.

Motor FLA QST 01

LCD Display

QST: Motor FLA 01 10 Amp

Range 1 – 6400 Amps RMS (**Default: 10A**)

Description The Motor FLA parameter configures the motor full load amps, and is obtained from the nameplate on the

attached motor.

If multiple motors are connected, the FLA of each motor must be added together for this value.

₩ NOTE: Incorrectly setting this parameter prevents proper operation of the motor overload protection, motor over current protection, motor undercurrent protection, ground fault protection and acceleration control.

Motor Service Factor

QST 02

LCD Display

QST: Motor SF 02 1.15

Range 1.00 – 1.99 (Default: 1.15)

Description

The Motor Service Factor parameter should be set to the service factor of the motor. The service factor is used for the overload calculations. If the service factor of the motor is not known, then the service factor should be set to 1.00.

% NOTE: The NEC (National Electrical Code) does not allow the service factor to be set above 1.40. Check with other local electrical codes for their requirements.

The National Electrical Code, article 430 Part C, allows for different overload multiplier factors depending on the motor and operating conditions. NEC section 430-32 outlines the allowable service factor for different motors.

See Also

Theory of Operation section 7.2, Motor Service Factor on page 122.

Motor Running Overload Class

OST 03

LCD Display:

QST: Running OL 03 10

Range

Off, 1 - 40 (**Default: 10**)

Description

The Motor Running Overload Class parameter sets the class of the electronic overload for starting and running if the Indep S/R OL (PFN 28) parameter is set to "Off". If separate starting versus running overload classes are desired, set the Indep S/R OL (PFN 28) parameter to "On".

The starter stores the thermal overload value as a percentage value between 0 and 100%, with 0% representing a "cold" overload and 100% representing a tripped overload.

When the parameter is set to "Off", the electronic overload is disabled in all states, starting and running. A separate motor overload protection device must be supplied.

₩ NOTE: Care must be taken not to damage the motor when turning the running overload class off or setting a high value.

₩ NOTE: Consult motor manufacturer data to determine the correct motor overload settings.

See Also

Independent Starting/Running Overload (PFN 28) on page 86.

Motor Starting Overload Class (PFN 29) on page 87.

Motor Overload Hot/Cold Ratio (PFN 31) on page 88.

Motor Overload Cooling Time (PFN 32) on page 88.

Motor OL Alarm Level (PFN 33) on page 89.

Motor OL Lockout Level (PFN 34) on page 89.

Motor OL Auto Lockout Level (PFN 35) on page 89.

Relay Output Configuration (I/O 10-15) on page 91.

Theory of Operation section 7.1, Solid State Motor Overload Protection on page 114.

Local Source

QST 04

LCD Display

QST: Local Src 04 Terminal

Range

LCD Description

Keypad The start/stop control is from the keypad.

Terminal The start/stop control is from the terminal strip inputs. (Default)

Serial The start/stop control is from the network.

Description

The MVRMX³ can have three sources of start and stop control: Terminal, Keypad and Serial. Two parameters, Local Source (QST 04) and Remote Source (QST 05) select the source of the start and stop control.

If a digital input is programmed as Local / Remote, then that input selects the control source. When the input is low, the local source is used. When the input is high, the remote source is used. If no digital input is

programmed as Local / Remote, then the local/remote bit in the starter control Modbus register selects the control source. The default value of the bit is Local (0).

₩ NOTE: By default, the [STOP] key is always enabled, regardless of selected control source. It may be disabled though using the Keypad Stop Disable (I/O 26) parameter.

See Also

Remote Source (QST 05) on page 60. Digital Input Configuration (I/O 01-08) on page 90. Keypad Stop Disable (I/O 26) on page 96. Communication Address (FUN 16) on page 107. Communication Baud Rate (FUN 17) on page 107. Communication Timeout (FUN 18) on page 107.

Remote Source QST 05

LCD Display

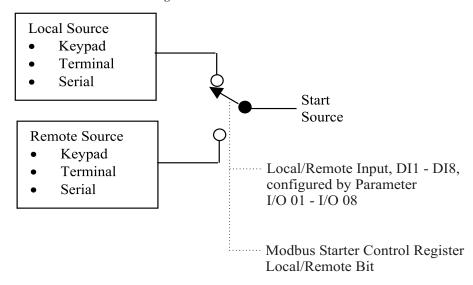
QST: Remote Src 05 Terminal

Range

LCD Description

Keypad The start/stop control is from the keypad.

Terminal The start/stop control is from the terminal strip inputs. (**Default**)


Serial The start/stop control is from the network.

Description

The MVRMX³ can have three sources of start and stop control: Terminal, Keypad and Serial. Two parameters, Local Source (QST 04) and Remote Source (QST 05) select the sources of the start and stop control.

If a digital input is programmed as Local / Remote, then that input selects the control source. When the input is low, the local source is used. When the input is high, the remote source is used. If no digital input is programmed as Local/Remote, then the local/remote bit in the Modbus starter control register selects the control source. The default value of the bit is Local (0).

Figure 29: Local / Remote Source

See Also

Local Source parameter (QST 04) on page 59.

Digital Input Configuration parameters (I/O 01 - 08) on page 90.

Keypad Stop Disable parameter (I/O 26) on page 96.

Communication Address parameter (FUN 16) on page 107.

Communication Baud Rate parameter (FUN 17) on page 107.

Communication Timeout parameter (FUN 18) on page 107.

Initial Current 1 QST 06

LCD Display

QST: Init Cur 1 06 100 %

Range

50 – 600 % of FLA (Default: 100%)

Description

The Initial Current 1 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting. This parameter sets the current that is initially supplied to the motor when a start is commanded. The initial current should be set to the level that allows the motor to begin rotating within a couple of seconds of receiving a start command.

To adjust the initial current setting, give the starter a run command. Observe the motor to see how long it takes before it begins rotating and then stop the unit. For every second that the motor doesn't rotate, increase the initial current by 20%. Typical loads require an initial current in the range of 50% to 175%.

If the motor does not rotate within a few seconds after a start command, the initial current should be increased. If the motor accelerates too quickly after a start command, the initial current should be decreased.

The Initial Current 1 parameter must be set to a value that is lower than the Maximum Current 1 (QST 07) parameter setting.

See Also

Start Mode (CFN 01) on page 63.

Ramp Time 1 (QST 08 / CFN 02) on page 64. Maximum Current 1 (QST 07 / CFN 04) on page 65.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Maximum Current 1

OST 07

LCD Display

QST: Max Cur 1 07 600 %

Range

100 – 800 % of FLA (**Default: 600%**)

Description

The Maximum Current 1 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting. This parameter performs two functions. It sets the current level for the end of the ramp profile, as well as the maximum current that is allowed to reach the motor after the ramp is completed.

If the ramp time expires before the motor has reached full speed, the starter holds the current at the maximum current level until either the UTS timer expires, the motor reaches full speed, or the overload trips.

Typically, the maximum current is set to 600% unless the power system or load dictates the setting of a lower maximum current.

See Also

Up To Speed Time (QST 09) on page 62.

Start Mode (CFN 01) on page 63.

Ramp Time 1 (QST 08 / CFN 02) on page 64. Initial Current 1 (QST 06 / CFN 03) on page 64.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Ramp Time 1

QST 08

LCD Display

QST: Ramp Time 1 08 15 sec

Range

0 - 300 seconds (**Default: 15 seconds**)

Description

The Ramp Time 1 parameter is the time it takes for the starter to allow the current, voltage, torque or power (depending on the start mode) to go from its initial to the maximum value. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

A typical ramp time setting is from 15 to 30 seconds.

If the ramp time expires before the motor reaches full speed, the starter maintains the maximum current level until either the motor reaches full speed, the UTS timer expires, or the motor thermal overload trips.

% NOTE: Setting the ramp time to a specific value does not necessarily mean that the motor will take this time to accelerate to full speed. The motor and load may achieve full speed before the ramp time expires if the application does not require the set ramp time and maximum current to reach full speed. Alternatively, the motor and load may take longer than the set ramp time to achieve full speed.

See Also

Up To Speed Time (QST 09) on page 62.

Start Mode (CFN 01) on page 63.

Initial Current 1 (QST 06 / CFN 03) on page 64. Maximum Current 1 (QST 07 / CFN 04) on page 65.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Up To Speed Time

QST 09

LCD Display

QST: UTS Time 09 20 sec

Range

1-300 seconds (**Default: 20 sec**)

Description

The Up To Speed Time parameter sets the maximum acceleration time to full speed that the motor can take. A stalled motor condition is detected if the motor does not get up-to-speed before the up-to-speed timer expires. The motor is considered up-to-speed once the current stabilizes below 175 percent of the FLA value and the ramp time expires.

% NOTE: During normal acceleration ramps, the up-to-speed timer has to be greater than the sum of the highest ramp time in use and the kick time. The up-to-speed timer does not automatically change to be greater than the ramp time. If a ramp time greater than the up-to-speed timer is set, the starter will declare an up-to-speed fault every time a start is attempted.

% NOTE: When the Start Mode (CFN 01) parameter is set to "Voltage Ramp", the UTS timer acts as an acceleration kick. When the UTS timer expires, full voltage is applied to the motor. This feature can be used to reduce motor oscillations if they occur near the end of an open loop voltage ramp start.

% NOTE: When the Starter Type (FUN 07) parameter is set to "Wye-Delta", the UTS timer is used as the transition timer. When the UTS timer expires, the transition from Wye starting mode to Delta running mode takes place if it has not already occurred.

Fault Code 01 - Up to Speed Fault is declared when a stalled motor condition is detected.

See Also

Start Mode (CFN 01) on page 63.

Ramp Time 1 (QST 08 / CFN 02) on page 64.

Ramp Time 2 (CFN 05) on page 65. Kick Time 1 (CFN 12) on page 69. Kick Time 2 (CFN 14) on page 69. Starter Type (FUN 07) on page 103.

Application section 7.7, Wye-Delta on page 140.

Theory of Operation section 7.3, Acceleration Control on page 123.

Jump to Parameter

CFN 00

LCD Display

CFN: Jump Code 00 1

Description:

By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter within that group.

Start Mode

CFN 01

LCD Display

CFN: Start Mode 01 Current Ramp

Range LCD Description

Voltage Ramp
Current Ramp
Current control acceleration ramp.
(Default)
TT Ramp
TruTorque control acceleration ramp.
Power Ramp
Power (kW) control acceleration ramp.
Tach Ramp
Tachometer control acceleration ramp.

Description

The Start Mode parameter allows the selection of the optimal starting ramp profile based on the application.

The closed loop current control acceleration ramp is ideal for starting most general-purpose motor applications. Ex: crushers, ball mills, reciprocating compressors, saws, centrifuges, and most other applications.

The closed loop trutorque control acceleration ramp is suitable for applications that require a minimum of torque transients during starting or for consistently loaded applications that require a reduction of torque surges during starting. Ex: centrifugal pumps, fans, and belt driven equipment.

The closed loop power control acceleration ramp is ideal for starting applications using a generator or other limited capacity source.

In addition to the basic motor and starter setup variables, the following needs to be done to use the tachometer feedback control ramp:

- Connect a tachometer with appropriate DC output voltage and correct polarity to the MX³ power card input (TB5-2(+input), TB5-3(-input)).
- The Start Mode (CFN 01) is to be selected as "Tach Ramp".
- Program Tachometer Full Speed Voltage (FUN 13, see page 106).
- Program Tachometer Loss Time (FUN 14, see page 106).
- Program Tachometer Loss Action (FUN 15, see page 106).
- Set the Initial Current Level (CFN 03, see page 64) to the desired current limit.
- Set the Maximum Current Level (CFN 04, see page 65) to the desired maximum current limit.

See Also

Initial Voltage/Torque/Power (CFN 08) on page 66. Maximum Torque/Power (CFN 09) on page 67. Acceleration Ramp Profile (CFN 10) on page 67.

Theory of Operation section 7.3, Acceleration Control on page 123.

Ramp Time 1 CFN 02

LCD Display

CFN: Ramp Time 1 02 15 sec

Range

0 - 300 seconds (**Default: 15 seconds**)

Description

The Ramp Time 1 parameter is the time it takes for the starter to allow the current, voltage, torque or power (depending on the start mode) to go from its initial to the maximum value. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

A typical ramp time setting is from 15 to 30 seconds.

If the ramp time expires before the motor reaches full speed, the starter maintains the maximum current level until either the motor reaches full speed, the UTS timer expires, or the motor thermal overload trips.

% NOTE: Setting the ramp time to a specific value does not necessarily mean that the motor will take this time to accelerate to full speed. The motor and load may achieve full speed before the ramp time expires if the application does not require the set ramp time and maximum current to reach full speed. Alternatively, the motor and load may take longer than the set ramp time to achieve full speed.

See Also

Up To Speed Time (QST 09) on page 62.

Start Mode (CFN 01) on page 63.

Initial Current 1 (QST 06 / CFN 03) on page 64. Maximum Current 1 (QST 07 / CFN 04) on page 65.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Initial Current 1

CFN 03

LCD Display

CFN: Init Cur 1 03 100 %

Range

50 - 600 % of FLA (**Default: 100%**)

Description

The Initial Current 1 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting. The Initial Current 1 parameter sets the current that is initially supplied to the motor when a start is commanded. The initial current should be set to the level that allows the motor to begin rotating within a couple of seconds of receiving a start command.

To adjust the initial current setting, give the starter a run command. Observe the motor to see how long it takes before it begins rotating and then stop the unit. For every second that the motor doesn't rotate, increase the initial current by 20%. Typical loads require an initial current in the range of 50% to 175%.

If the motor does not rotate within a few seconds after a start command, the initial current should be increased. If the motor takes off too quickly after a start command, the initial current should be decreased.

The Initial Current 1 parameter must be set to a value that is lower than the Maximum Current 1 (QST 07/CFN 04) parameter setting.

See Also

Start Mode (CFN 01) on page 63.

Ramp Time 1 (QST 08 / CFN 02) on page 64. Maximum Current 1 (QST 07 / CFN 04) on page 65.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Maximum Current 1

CFN 04

LCD Display

CFN: Max Cur 1 04 600 %

Range

100 - 800 % of FLA (Default: 600%)

Description

The Maximum Current 1 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting and performs two functions. It sets the current level for the end of the ramp profile. It also sets the maximum current that is allowed to reach the motor after the ramp is completed.

If the ramp time expires before the motor has reached full speed, the starter holds the current at the maximum current level until either the UTS timer expires, the motor reaches full speed, or the overload trips.

Typically, the maximum current is set to 600% unless the power system or load dictates the setting of a lower maximum current.

See Also

Up To Speed Time (QST 09) on page 62.

Start Mode (CFN 01) on page 63.

Ramp Time 1 (QST 08 / CFN 02) on page 64. Initial Current 1 (QST 06 / CFN 03) on page 64.

Kick Level 1 (CFN 11) on page 68. Kick Time 1 (CFN 12) on page 69.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Ramp Time 2

CFN 05

LCD Display

CFM: Ramp Time 2 05 15 sec

Range

0 - 300 seconds (**Default: 15 seconds**)

Description

The Ramp Time 2 parameter sets the time it takes for the starter to allow the current to go from the initial current to the maximum current when the second ramp is active. Refer to the Ramp Time 1 (QST 08 / CFN 02) for description of operation.

See Also

Ramp Time 1 (QST 08 / CFN 02) on page 64. Digital Input Configuration (I/O 01-08) on page 90.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramp and Times on page 123. Theory of Operation section 7.3.6, Dual Acceleration Ramp Control on page 128.

Initial Current 2

CFN 06

LCD Display

CFN: Init Cur 2 06 100 %

Range

50 – 600 % of FLA (**Default: 100%**)

Description

The Initial Current 2 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting when the second ramp is active. Refer to the Initial Current 1 (CFN 03) parameter for description of operation.

See Also

Initial Current 1 (CFN 03) on page 64.

Digital Input Configuration (I/O 01-08) on page 90.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123. Theory of Operation section 7.3.6, Dual Acceleration Ramp Control on page 128.

Maximum Current 2

CFN 07

LCD Display

CFN: Max Cur 2 07 600 %

Range 100 – 800 % of FLA (**Default: 600%**)

Description The Maximum Current 2 parameter is set as a percentage of the Motor FLA (QST 01) parameter setting, when

the second ramp is active. Refer to the Maximum Current 1 (CFN 04) on page 65 parameter for description of

operation.

See Also Maximum Current 1 (CFN 04) on page 65.

Digital Input Configuration (I/O 01-08) on page 90.

Theory of Operation section 7.3.1, Current Ramp Settings, Ramps and Times on page 123.

Theory of Operation section 7.3.6, Dual Acceleration Ramp Control on page 128.

Initial Voltage/Torque/Power

CFN 08

LCD Display

CFN: Init U/T/P 08 25 %

Range 1 – 100 % of Voltage/Torque/Power (**Default: 25%**)

Description

Start Mode (CFN 01) set to Open Loop Voltage Acceleration:

This parameter sets the starting point for the voltage acceleration ramp profile. A typical value is 25%. If the motor starts too quickly or the initial current is too high, reduce this parameter. If the motor does not start rotating within a few seconds after a start is commanded, increase this parameter.

Start Mode (CFN 01) set to Current Control Acceleration:

Not used when the Start Mode parameter is set to Current control acceleration. Refer to the Initial Current 1 (QST 06/CFN 03) parameter to set the initial current level.

Start Mode (CFN 01) set to TruTorque Control Acceleration:

This parameter sets the initial torque level that the motor produces at the beginning of the starting ramp profile. A typical value is 10% to 20%. If the motor starts too quickly or the initial torque level is too high, reduce this parameter. If the motor does not start rotating within a few seconds after a start is commanded, increase this parameter. If the value is set too low a "No Current at Run" fault may occur during acceleration.

₩ NOTE: It is important that the Rated Power Factor (FUN 06) parameter is set properly so that the actual initial torque level is the value desired.

Start Mode (CFN 01) set to (kW) Power Control Acceleration:

This parameter sets the initial motor power (KW) level that will be achieved at the beginning of the starting ramp profile. A typical value is 10% to 30%. If the motor starts too quickly or the initial power level is too high, reduce this parameter. If the motor does not start rotating within a few seconds after a start is commanded, increase this parameter. If the value is set too low a "No Current at Run" fault may occur during acceleration.

ૠ NOTE: It is important that the Rated Power Factor (FUN 06) parameter is set properly so that the actual initial power level is the value desired.

See Also

Start Mode (CFN 01) on page 63. Ramp Time 1 (CFN 02) on page 64.

Initial Current 1 (CFN 03 / QST 06) on page 64.

Maximum Torque/Power (CFN 09) on page 66.

Rated Power Factor (FUN 06) on page 103.

Theory of Operation section 7.3, Acceleration Control on page 123.

Maximum Torque/Power

CFN 09

LCD Display

CFN: Max T/P 09 105 %

Range

10 - 325 % of Torque/Power (Default: 105%)

Description

Start Mode (CFN 01) set to Open Loop Voltage Acceleration:

Not used when the Start Mode (CFN 01) parameter is set to open-loop voltage acceleration. When in open loop voltage acceleration mode, the final voltage ramp value is always 100% or full voltage.

Start Mode (CFN 01) set to Current Control Acceleration:

Not used when the Start Mode (CFN 01) parameter is set to current control acceleration mode. Refer to the Maximum Current 1 (CFN 04) parameter to set the maximum current level.

Start Mode (CFN 01) set to TruTorque Control Acceleration:

This parameter sets the final or maximum torque level that the motor produces at the end of the acceleration ramp time. For a loaded motor, the maximum torque value initially should be set to 100% or greater. If the maximum torque value is set too low, the motor may not produce enough torque to reach full speed and may stall. On lightly loaded motors, this parameter may be reduced below 100% to produce smoother starts.

₩ NOTE: It is important that the Rated Power Factor (FUN 06) parameter is set properly so that the desired maximum torque level is achieved.

Start Mode (CFN 01) set to Power Control Acceleration:

This parameter sets the final or maximum power (KW) consumption level that will be achieved at the end of the ramp time. For a loaded motor, the maximum power value initially should be set to 100% or greater. If the maximum power level is set too low, the motor may not produce enough torque to reach full speed and may stall. On lightly loaded motors, this parameter may be reduced below 100% to provide for smoother starts.

₩ NOTE: It is important that the Rated Power Factor (FUN 06) parameter is set properly so that the actual maximum power level is achieved.

See Also

Start Mode (CFN 01) on page 63.

Ramp Time 1 (CFN 02 / QST 08) on page 64.

Maximum Current 1 (QST 07 / CFN 04) on page 65.

Initial Voltage/Torque/Power (CFN 08) on page 66.

Initial Current 1 (CFN 03) on page 64.

Rated Power Factor (FUN 06) on page 103.

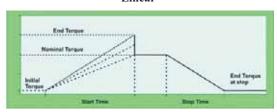
Theory of Operation section 7.3, Acceleration Control on page 123.

Acceleration Ramp Profile

CFN 10

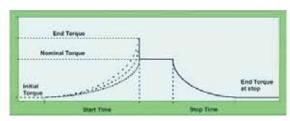
LCD Display

CFN: Accel Prof 10 Linear

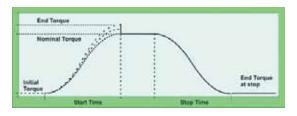

Range

Linear, Square, S-Curve (Default: Linear)

Description


Linear – The linear profile linearly increases the control reference (voltage, current, torque, power, speed) from the initial acceleration ramp value to the final acceleration ramp value. The linear profile is the default profile and is recommended for most acceleration and deceleration situations.

Linear


Squared – The squared profile increases the control reference (voltage, current, torque, power, speed) in a squared manner. A squared acceleration profile can be useful when using TruTorque control on a load with a squared torque characteristic (such as pumps, and fans). A squared torque profile can provide a more linear speed profile during acceleration and deceleration.

Squared

S—Curve – The S-curve profile slowly increases the control reference's rate of change at the beginning of the ramp profile and an slowly decreases the rate of change of the reference at the end of the ramp profile. This profile can be useful when using closed loop tach control to smooth the starting and ending of the acceleration profile. It can also be useful with other types of control methods that require extra smooth starts.

S-Curve

See Also

Start Mode (CFN 01) on page 63.

Kick Level 1 CFN 11

LCD Display

CFN: Kick Lvl 1 11 Off

Range

Off, 100 - 800% of FLA (Default: Off)

Description

The Kick Level 1 parameter sets the current level that precedes any ramp when a start is first commanded. The kick current is only useful on motor loads that are hard to get rotating but then are much easier to move once they are rotating. An example of a load that is hard to get rotating is a ball mill. The ball mill requires a high torque to get it to rotate the first quarter turn (90°) . Once the ball mill is past 90° of rotation, the material inside begins tumbling and it is easier to turn.

The kick level is usually set to a low value and then the kick time is adjusted to get the motor rotating. If the kick time is set to more than 2.0 seconds without the motor rotating, increase the kick current by 100% and re-adjust the kick time.

See Also

Start Mode on (CFN 01) on page 63. Kick Time 1 on (CFN 12) on page 68.

Theory of Operation section 7.3.2, Programming A Kick Current on page 124.

Kick Time 1 CFN 12

LCD Display

CFN:Kick Time 1 12 1.0 sec

Range 0.1-10.0 seconds (**Default: 1.0 sec**)

Description The Kick Time 1 parameter sets the length of time that the kick current level is applied to the motor.

The kick time adjustment should begin at 0.5 seconds and be adjusted by 0.1 or 0.2 second intervals until the motor begins rotating. If the kick time is adjusted above 2.0 seconds without the motor rotating, start over with a higher kick current setting.

NOTE: The kick time adds to the total start time and must be accounted for when setting the UTS time.

See Also Up To Speed (QST 09) on page 62

Start Mode (CFN 01) on page 63. Kick Level 1 (CFN 11) on page 68.

Theory of Operation section 7.3.2, Programming A Kick Current on page 124.

Kick Level 2 CFN 13

LCD Display

CFN: Kick Lvl 2 13 Off

Range Off, 100 – 800% of FLA (Default: Off)

DescriptionThe Kick Level 2 parameter sets the current level that precedes any ramp when a start is first commanded

when the second ramp is active. Refer to the Kick Level 1 (CFN 11) parameter on page 68 for description of

operation.

Kick Time 2 CFN 14

LCD Display

CFN:Kick Time 2 14 1.0 sec

Range 0.1 - 10.0 seconds (**Default: 1.0 sec**)

Description The Kick Time 2 parameter sets the length of time that the kick current level is applied to the motor when the

second ramp is active. Refer to the Kick Time 1 (CFN 12) parameter on page 69 for description of operation.

See Also Kick Level 1 (CFN 11) on page 68.

Digital Input Configuration (I/O 01 - 08) on page 90.

Theory of Operation section 7.3.2, Programming A Kick Current on page 124. Theory of Operation section 7.3.6, Dual Acceleration Ramp Control on page 128.

Stop Mode CFN 15

LCD Display

CFN: Stop Mode 15 Coast

Range LCD Description

Coast Coast to stop. (**Default**)
Volt Decel Open loop voltage deceleration
TT Decel TruTorque deceleration

DC Brake DC Braking

Description

Coast: A coast to stop should be used when no special stopping requirements are necessary; example: crushers, balls mills, centrifuges, belts, conveyor. The bypass contactor is opened before the SCRs stop gating to reduce wear on the contactor contacts.

Voltage Decel: In this mode, the starter linearly phases-back the SCRs based on the parameters Decel Begin Level (CFN 16), Decel End Level (CFN 17), and Decel Time (CFN 18).

TruTorque Decel: In this mode, the starter linearly reduces the motor torque based on the parameters Decel End Level (CFN 17) and Decel Time (CFN 18).

DC Brake: In this mode the starter provides D.C. injection for frictionless braking of a three phase motor. **% NOTE:** The MVRMX³ stops the motor when any fault occurs. Depending on the application, it may be desirable for the motor to be stopped in a controlled manner (Voltage Decel, TT Decel or D.C. Braking) instead of being allowed to coast to a stop when this occurs. This may be achieved by setting the Controlled Fault Stop (PFN 25) parameter to "On". Be aware however that not all fault conditions allow for a controlled fault stop.

See Also

Decel Begin Level (CFN 16) on page 70. Decel End Level (CFN 17) on page 71. Decel Time (CFN 18) on page 71.

Deceleration Ramp Profile (CFN 19) on page 72.

DC Brake Level (CFN 20) on page 72. DC Brake Time (CFN 21) on page 73.

DC Brake Delay (CFN 22) on page 73.

Controlled Fault Stop Enable (PFN 25) on page 85. Digital Input Configuration (I/O 01 - 08) on page 90. Relay Output Configuration (I/O 10 - 15) on page 91. Theory of Operation, Deceleration Control on page 131. Theory of Operation, Braking Controls on page 133.

Decel Begin Level

CFN 16

LCD Display

CFN:Decel Begin 16 40 %

Range

1-100 % of phase angle firing (**Default: 40%**)

Description

Stop Mode (CFN 15) set to Voltage Deceleration:

The voltage deceleration profile utilizes an open loop S-curve voltage ramp profile. The Decel Begin Level parameter sets the initial or starting voltage level when transferring from running to deceleration. The deceleration beginning level is not a precise percentage of actual line voltage, but defines a point on the S-curve deceleration profile.

A typical voltage decel begin level setting is between 30% and 40%. If the motor initially surges (oscillates) when a stop is commanded, decrease this parameter value. If there is a sudden drop in motor speed when a stop is commanded, increase this parameter value.

Stop Mode (CFN 15) set to TruTorque Deceleration:

Not used when the Stop Mode parameter is set to "TruTorque Decel". The TruTorque beginning deceleration level is automatically calculated based on the motor load at the time the stop command is given.

₩ NOTE: It is important that the Rated Power Factor (FUN 06) parameter is set properly so that the actual deceleration torque levels are the levels desired.

See Also Stop Mode (CFN 15) on page 70.

Decel End Level (CFN 17) on page 71. Decel Time (CFN 18) on page 71.

Controlled Fault Stop Enable (PFN 25) on page 85. Rated Power Factor (FUN 06) on page 103.

Theory of Operation section 7.4, Deceleration Control on page 131.

Decel End Level

CFN 17

LCD Display

CFN: Decel End 17 20 %

Range

1-99% of phase angle firing (**Default: 20%**)

Description

Stop Mode (CFN 15) set to Voltage Deceleration:

The voltage deceleration profile utilizes an open loop S-curve voltage ramp profile. The Decel End Level parameter sets the ending voltage level for the voltage deceleration ramp profile. The deceleration ending level is not a precise percentage of actual line voltage, but defines an ending point on the S-curve deceleration profile.

A typical voltage decel end level setting is between 10% and 20%. If the motor stops rotating before the deceleration time has expired, increase this parameter value. If the motor is still rotating when the deceleration time has expired, decrease this parameter value. If the value is set too low a "No Current at Run" fault may occur during deceleration.

♯ NOTE: The deceleration end level cannot be set greater than the decel begin level.

Stop Mode (CFN 15) set to TruTorque Deceleration:

The Decel End Level parameter sets the ending torque level for the TruTorque deceleration ramp profile.

A typical TruTorque decel end level setting is between 10% and 20%. If the motor stops rotating before the deceleration time has expired, increase this parameter value. If the motor is still rotating when the deceleration time has expired, decrease this parameter value.

See Also

Stop Mode (CFN 15) on page 70. Decel Begin Level (CFN 16) on page 70. Decel Time (CFN 18) on page 71.

Controlled Fault Stop Enable (PFN 25) on page 85.

Theory of Operation section 7.4, Deceleration Control on page 131.

Decel Time

CFN 18

LCD Display

CFN: Decel Time 18 15 sec

Range

1 – 180 seconds (**Default: 15 sec**)

Description

The Decel Time parameter sets the time that the deceleration profile is applied to the motor and sets the slope of the deceleration ramp profile. In voltage decel mode, this time sets the time to ramp from the initial decel level to the final decel level.

% NOTE: If the motor is not up to speed when a stop is commanded, the voltage decel profile begins at the lower of either the decel begin level setting or at the motor voltage level when the stop is commanded. Although the profile may be adjusted, the deceleration time remains the same.

In the TruTorque deceleration mode, the decel time sets the time between when a stop is commanded and when the decel end torque level is applied.

If the motor stops rotating before the decel time expires, decrease the Decel Time (CFN 18) parameter. If the motor is still rotating when the decel time expires, increase the Decel Time (CFN 18) parameter.

A typical decel time is 20 to 40 seconds.

₩ NOTE: Depending on the motor load and the Decel parameter settings, the motor may or may not be fully stopped at the end of the deceleration time.

Refer to section 7.4, Deceleration Control on page 131.

See Also Stop Mode (CFN 15) on page 70.

Decel Begin Level (CFN 16) on page 70. Decel End Level (CFN 17) on page 71. Controlled Fault Stop (PFN 25) on page 85.

Theory of Operation section 7.4, Deceleration Control on page 131.

Decel Ramp Profile

CFN 19

LCD Display

CFN: Decel Prof 19 Linear

Range Linear, Squared, S-Curve (Default: Linear)

Description See Accel Prof (CFN 10) on page 67 for details.

See Also Stop Mode (CFN 15) on page 70.

DC Brake Level

CFN 20

LCD Display

CFN: Brake Level 20 25 %

Range

10-100~% of available brake torque (Default: 25%)

Description

When the Stop Mode (CFN 15) is set to "DC brake", the DC Brake Level parameter sets the level of DC current applied to the motor during braking. The desired brake level is determined by the combination of the system inertia, system friction, and the desired braking time. If the motor is braking too fast the level should be reduced. If the motor is not braking fast enough the level should be increased. Refer to Nema MG1, Parts 12 and 20 for maximum load inertias. A PTC Thermistor or RTD MUST be installed to protect the motor.

DC Brake Function Programming Steps:

- 1. The DC Brake function may be enabled by setting the Stop Mode (CFN 15) parameter to "DC Brake".
- Once this function is enabled, a relay output configuration (I/O 10 15) must be used to control the DC brake contactor or 7th SCR gate drive card during braking. It is recommended to use Relay R3 - (I/O12) because it is a higher rated relay.

₩ NOTE: Standard duty braking

- For load inertias less than 6 x motor inertia

Heavy duty braking

- For NEMA MG1 parts 12 and 20 maximum load inertias

% NOTE: When DC injection braking is utilized, discretion must be used when setting up the DC Brake Level. Motor heating during DC braking is similar to motor heating during starting. Even though the Motor OL is active (if not set to "Off") during DC injection braking, excessive motor heating could still result if the load inertia is large or the brake level is set too high. Caution must be used to assure that the motor has the thermal capacity to handle braking the desired load in the desired period of time without excessive heating.

₩ NOTE: Consult motor manufacturer for high inertia applications.

NOTE: Not to be used as an emergency stop. When motor braking is required even during a power outage an electromechanical brake must be used.

See Also

Stop Mode parameter (CFN 15) on page 70. DC Brake Time parameter (CFN 21) on page 73. DC Brake Delay parameter (CFN 22) on page 73.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Digital Input parameters (I/O 01 - 08) on page 90.

Theory of Operation section 7.1, Solid State Motor Overload Protection, on page 114. Theory of Operation Section 7.5.1, DC Injection Braking Control, on page 134.

DC Brake Time

CFN 21

LCD Display

CFN: Brake Time 21 5 sec

Range

1 – 180 Seconds (**Default: 5**)

Description

When the Stop Mode (CFN 15) parameter is set to "DC brake", the DC Brake Time parameter sets the time that DC current is applied to the motor. The required brake time is determined by the combination of the system inertia, system friction, and the desired braking level. If the motor is still rotating faster than desired at the end of the brake time increase the brake time if possible. If the motor stops before the desired brake time has expired decrease the brake time to minimize unnecessary motor heating.

See Also

Motor Running Overload Class parameter (QST 03) on page 59.

Stop Mode parameter (CFN 15) on page 70. DC Brake Level parameter (CFN 20) on page 72. DC Brake Delay parameter (CFN 22) on page 73.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Theory of Operation section 7.5.9, DC Injection Braking Control, on page 138.

DC Brake Delay

CFN 22

LCD Display

CFN:Brake Delay 22 0.2 sec

Range

0.1 - 3.0 Seconds (**Default: 0.2**)

Description

When the Stop Mode (CFN 15) is set to "DC brake", the DC Brake Delay time is the time delay between when a stop is commanded and the DC braking current is applied to the motor. This delay allows the residual magnetic field and motor counter EMF to decay before applying the DC braking current. If a large surge of current is detected when DC braking is first engaged increase the delay time. If the delay before the braking action begins is too long then decrease the delay time. In general, low horsepower motors can utilize shorter delays while large horsepower motor may require longer delays.

See Also

Stop Mode parameter (CFN 15) on page 70. DC Brake Level parameter (CFN 20) on page 72. DC Brake Time parameter (CFN 21) on page 73.

Theory of Operation section 7.5.9, DC Injection Braking Control, on page 138.

Preset Slow Speed

CFN 23

LCD Display

CFN: SSpd Speed 23 Off

Range

Off, 1.0 – 40.0 % (Default: Off)

Description

The Preset Slow Speed parameter sets the speed of motor operation. When set to "Off", slow speed operation is disabled.

Slow speed operation is commanded by programming one of the digital inputs to either "Slow Speed Forward" or "Slow Speed Reverse". Energizing the Slow Speed Input when the starter is idle will initiate slow speed operation.

NOTE: When the motor is operating at slow speeds its cooling capacity can be greatly reduced. Therefore, the running time of the motor at a given current level is dependant on the motor's thermal capacity. Although the Motor OL is active (if not set to "Off") during slow speed operation, it is recommended that the motor temperature be monitored when slow speed is used for long periods of time.

See Also

Slow Speed Current Level parameter (CFN 24) on page 74. Slow Speed Time Limit parameter (CFN 25) on page 74.

Motor PTC Trip Time (PFN 27) on page 86.

Digital Input Configuration parameters (I/O 01 - 08) on page 90. Relay Output Configuration parameter (I/O 10 - 15) on page 91. Theory of Operation section 7.6, Slow Speed Operation on page 138.

Preset Slow Speed Current Level

CFN 24

LCD Display

CFN: SSpd Curr 100 % 24

Range

10 - 400 % FLA (**Default: 100 %**)

Description

The Preset Slow Speed Current Level parameter selects the level of current applied to the motor during slow speed operation. The parameter is set as a percentage of motor full load amps (FLA). This value should be set to the lowest possible current level that will properly operate the motor.

NOTE: When the motor is operating at slow speeds its cooling capacity can be greatly reduced. Therefore, the running time of the motor at a given current level is dependant on the motor's thermal capacity. Although the Motor OL is active (if not set to "Off") during slow speed operation, it is recommended that the motor temperature be monitored when slow speed is used for long periods of time.

See Also

Motor Running Overload Class parameter (QST 03) on page 59. Slow Speed Time Limit parameter (CFN 25) on page 74. Motor PTC Trip Time (PFN 27) on page 86.

Theory of Operation section 7.6, Slow Speed Operation on page 138.

Slow Speed Time Limit

CFN 25

LCD Display

CFN: SSpd Timer 25 10 sec

Range

Off, 1 - 900 Seconds (**Default: 10 sec**)

Description

The Slow Speed Time Limit parameter sets the amount of time that continuous operation of slow speed may take place. When this parameter is set to "Off", the timer is disabled. This parameter can be used to limit the amount of slow speed operation to protect the motor and/or load.

NOTE: The Slow Speed Time Limit includes the time used for the Slow Speed Kick Time (CFN27) parameter if kick is enabled.

NOTE: The Slow Speed Time Limit resets when the motor is stopped. Therefore, this timer does not prevent the operator from stopping slow speed operation and re-starting the motor, which can result in the operation time of the motor being exceeded.

NOTE: When the motor is operating at slow speeds, its cooling capacity can be greatly reduced. Therefore, the running time of the motor at a given current level is dependant on the motor's thermal capacity. Although the Motor OL is active (if not set to "Off") during slow speed operation it is recommended that the motor temperature be monitored if slow speed is used for long periods of time.

See Also

Motor Running Overload Class (QST 03) parameter on page 59. Slow Speed Current Level (CFN 24) parameter on page 74. Motor PTC Trip Time (PFN 27) parameter on page 86. Theory of Operation section 7.6, Slow Speed Operation on page 138.

Slow Speed Kick Level

CFN 26

LCD Display

CFN:SSpd Kick Cu 26 Off

Range

Off, 100 - 800 % FLA (Default: Off)

Description

The Slow Speed Kick Level sets the short-term current level that is applied to the motor to accelerate the motor for slow speed operation. If set to "Off" the Slow Speed Kick feature is disabled. Slow speed kick can be used to "break loose" difficult to start loads while keeping the normal slow speed current level at a lower level.

This parameter should be set to a midrange value and then the Slow Speed Kick Time (CFN 27) parameter should be increased in 0.1 second intervals until the kick is applied long enough to start the motor rotating. If the motor does not start rotating then increase the Slow Speed Kick Level and begin adjusting the kick time from 1.0 seconds again.

If the motor initially accelerates too fast then reduce the Slow Speed Kick Level and/or reduce the Slow Speed Kick Time (CFN 27).

See Also

Kick Level 1 parameter (CFN 11) on page 67. Slow Speed Kick Time parameter (CFN 27) on page 75. Motor PTC Trip Time (PFN 27) on page 86.

Theory of Operations section 7.6, Slow Speed Operation on page 138.

Slow Speed Kick Time

CFN 27

LCD Display

CFN: SSpd Kick T 27 1.0 sec

Range

0.1 - 10.0 seconds (**Default: 1.0 sec**)

Description

The Slow Speed Kick Time parameter sets the length of time that the Slow Speed Kick Current Level (CFN 24) is applied to the motor at the beginning of slow speed operation. After the Slow Speed Kick Level (CFN 26) is set, the Slow Speed Kick Time should be adjusted so that the motor starts rotating when a slow speed command is given.

If the motor initially accelerates too fast then reduce the Slow Speed Kick Level (CFN 26) and/or reduce the Slow Speed Kick Time.

See Also

Preset Slow Speed (CFN 23) on page 73.

Slow Speed Kick Level parameter (CFN 26) on page 75.

Motor PTC Trip Time (PFN 27) on page 86.

Theory of Operations section 7.6, Slow Speed Operation on page 138.

Jump to Parameter

PFN 00

LCD Display

PFN: Jump Code 00 1

Description

By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter within that group.

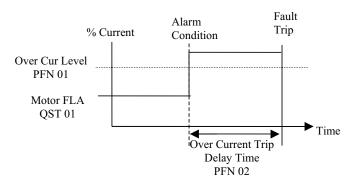
Over Current Trip Level

PFN 01

LCD Display

PFN:Over Cur Lvl 01 Off

Range


Off, 50 - 800 % of FLA (Default: Off)

Description

If the MX³ detects a one cycle, average current that is greater than the level defined, an over current alarm condition exists and any relays programmed as alarm will energize. The over current timer starts a delay time. If the over current still exists when the delay timer expires, the starter Over Current Trips (F31) any relay programmed as fault relay changes state.

The Over Current Trip is only active in the UTS state, Energy Saver state, Current follower or while in the Phase Control mode.

A relay can be programmed to change state when an over current alarm condition is detected.

See Also

Over Current Time parameter (PFN 02) on page 76. Auto Reset parameter (PFN 23) on page 84. Controlled Fault Stop Enable parameter (PFN 25) on page 85. Relay Output Configuration parameters (I/O 10 - 15) on page 91.

Over Current Trip Delay Time

PFN 02

LCD Display

PFN:Over Cur Tim 02 0.1 sec

Range

Off, 0.1 - 90.0 seconds (**Default: 0.1 sec**)

Description

The Over Current Time parameter sets the period of time that the motor current must be greater than the Over Current Level (PFN 01) parameter before an over current fault and trip occurs.

If "Off" is selected, the over current timer does not operate and the starter does not trip. It energizes any relay

set to Over current until the current drops or the starter trips on an overload.

A shear pin function can be implemented by setting the delay to its minimum value.

See Also

Over Current Level parameter (PFN 01) on page 76.

Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85. Relay Output Configuration parameters (I/O 10 - 15) on page 91.

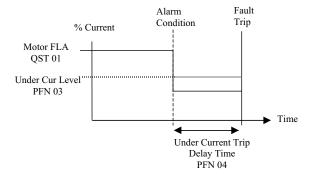
Under Current Trip Level

PFN 03

LCD Display

PFN:Undr Cur Lvl 03 Off

Range


Off, 5 - 100 % of FLA (Default: Off)

Description

If the MX³ detects a one cycle, average current that is less than the level defined, an under current alarm condition exists and any relays programmed as alarm will energize. The under current timer starts a delay time. If the under current still exists when the delay time expires, the starter Under Current Trips (F34) and any relay programmed as fault relay changes state.

The Under Current Trip is only active in the UTS state, Energy Saver state, Current follower or while in the Phase Control mode.

A relay can be programmed to change state when an under current alarm condition is detected.

See Also

Under Current Time parameter (PFN 04) on page 77.

Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85. Relay Output Configuration parameters (I/O 10 - 15) on page 91.

Under Current Trip Delay Time

PFN 04

LCD Display

PFN:Undr Cur Tim 04 0.1 sec

Range

Off, 0.1 - 90.0 seconds (**Default: 0.1 sec**)

Description

The Under Current Time parameter sets the period of time that the motor current must be less than the Under Current Level (PFN 03) parameter before an under current fault and trip occurs.

If "Off" is selected, the under current timer does not operate and the starter does not trip. It energizes any relay set to undercurrent until the current rises.

See Also

Under Current Level parameter (PFN 03) on page 77.

Relay Output Configuration parameters (I/O 10 - 15) on page 91.

Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Current Imbalance Trip Level

PFN 05

LCD Display

Range

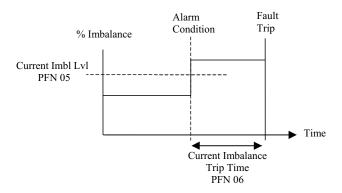
Off, 5 - 40 % (**Default: 15 %**)

Description

The Current Imbalance Level parameter sets the imbalance that is allowed before the starter shuts down. The current imbalance must exist for the Current Imbalance Delay Trip Time (PFN 06) before a fault occurs.

At average currents less than or equal to full load current (FLA), the current imbalance is calculated as the percentage difference between the phase current that has the maximum deviation from the average current (Imax) and the FLA current.

The equation for the current imbalance if running at current <=FLA:


$$\% imbalance = \frac{(Iave-Imax)}{FLA} \times 100\%$$

At average currents greater than full load current (FLA), the current imbalance for each phase is calculated as the percentage difference between the phase current that has the maximum deviation from the average current (Imax) and the average current (Iave).

The equation for the current imbalance if running at current > FLA:

$$\% imbalance = \frac{(Iave-Imax)}{Iave} \times 100\%$$

If the highest calculated current imbalance is greater than the current imbalance level for the Current Imbalance Delay Trip Time (PFN 06), the starter shuts down the motor and declares a Fault 37 (Current Imbalance).

See Also

Current Imbalance Trip Time (PFN 06) on page 78. Auto Reset parameter (PFN 23) on page 84. Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Current Imbalance Trip Time

PFN 06

LCD Display

Range

0.1 - 90.0 seconds (**Default: 10.0 sec**)

Description

The Imbalance Delay parameter sets the time that the current imbalance must be greater than the Percent Imbalance (PFN 05) parameter before a trip will occur.

See Also

Current Imbalance Trip Level (PFN 05) on page 78.

Residual Ground Fault Trip Level

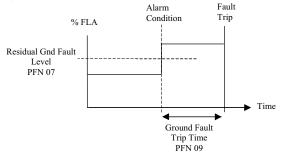
PFN 07

LCD Display

PFN:Resid GF Lvl 07 Off

Range

Off, 5 - 100 % FLA (Default: Off)


Description

The Residual Ground Fault parameter sets a ground fault current trip or indicate level that can be used to protect the system from a ground fault condition. The starter monitors the instantaneous sum of the three line currents to detect the ground fault current.

Ground Fault Trip: The MVRMX³ will trip with a ground fault indication if:

- No other fault currently exists.
- Ground fault current is equal to or greater than the GF Trip Level for a time period greater than the GF Trip Delay (PFN 09).

Once the starter recognizes a ground fault condition, it shuts down the motor and declares a Fault 38 (Ground Fault).

If a programmable relay (I/O 01 - 08) is set to "Ground Fault", the starter energizes the relay when the condition exists.

A typical value for the ground fault current setting is 10% to 20% of the full load amps of the motor.

₩ NOTE: This type of protection is meant to provide machine ground fault protection only. It is not meant to provide human ground fault protection.

NOTE: The MVRMX³ residual ground fault protection function is meant to detect ground faults on solidly grounded systems. Use on a high impedance or floating ground power system may impair the usefulness of the MVRMX³ residual ground fault detection feature.

₩ NOTE: Due to uneven CT saturation effects and motor and power system variations, there may be small values of residual ground fault currents measured by the MVRMX³ during normal operation.

See Also

Ground Fault Trip Time parameter (PFN 09) on page 80. Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Relay Output Configuration parameters (I/O 10 - 15) on page 91.

Zero Sequence Ground Fault Trip Level

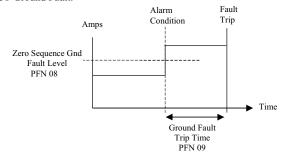
PFN 08

LCD Display

PFN: ZS GF Lvl 08 Off

Range

Off, 1.0 - 25.0 amps (**Default: Off**)


Description

The Zero Sequence Ground Fault parameter sets a ground fault current trip or alarm level that can be used to protect the system from a ground fault condition. In isolated or high impedance-grounded systems, core-balanced current sensors are typically used to detect low level ground faults caused by insulation breakdowns or entry of foreign objects. Detection of such ground faults can be used to interrupt the system to prevent further damage, or to alert the appropriate personnel to perform timely maintenance.

Ground Fault Trip: The MVRMX³ will trip with a ground fault indication if:

- No other fault currently exists.
- Ground fault current is equal to or greater than the GF Trip Level for a time period greater than the GF Trip Delay (PFN 09).

Once the starter recognizes a ground fault condition, it will shut down the motor and display a fault F38-Ground Fault.

If a programmable relay $(I/O\ 10 - 15)$ is set to "Ground Fault", the starter energizes the relay when the condition exists.

₩ NOTE: The MVRMX³ zero sequence ground fault detection consists of installing a Cat. No BICT-2000/1-6 (50: 0.025 amps) core balance current transformer to terminal J15 Gnd Flt located on the I/O card.

See Also

Ground Fault Trip Time (PFN 09) on page 80. Auto Reset parameter (PFN 23) on page 84. Controlled Fault Stop (PFN 25) on page 85. Relay Outputs (I/O 10 - 15) on page 91.

Ground Fault Trip Time

PFN 09

LCD Display

PFN: Gnd Flt Time 09 3.0 sec

Range

0.1 - 90.0 seconds (**Default: 3.0**)

Description

The Ground Fault Trip Time parameter can be set from 0.1 to 90.0 seconds in 0.1 second intervals.

See Also

Residual Ground Fault Trip Level (PFN 07) on page 79. Zero Sequence Ground Fault Trip Level (PFN 08) on page 80.

Over Voltage Trip Level

PFN 10

LCD Display

PFN:Over Vlt Lvl 10 Off

Range

Off, 1-40% (Default: Off)

Description

If the MVRMX³ detects a one cycle input phase voltage that is above the over voltage level, the over/under voltage alarm is shown and the voltage trip timer begins counting. The delay time must expire before the starter faults.

₩ NOTE: For the over voltage protection to operate correctly, the Rated Voltage parameter (FUN 05) must be set correctly.

₩ NOTE: The voltage level is only checked when the starter is running.

See Also

Under Voltage Level parameter (PFN 11) on page 81. Voltage Trip Time parameter (PFN 12) on page 81. Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Rated Voltage parameter (FUN 05) on page 103.

Under Voltage Trip Level

PFN 11

LCD Display

PFN: Undr Vlt Lvl 11 Off

Range

Off, 1 - 40 % (Default: Off)

Description

If the MVRMX³ detects a one cycle input phase voltage that is below the under voltage level, the over/under voltage alarm is shown and the voltage trip timer begins counting. The delay time must expire before the starter faults.

₩ NOTE: For the under voltage protection to operate correctly, the Rated Voltage parameter (FUN 05) must be set correctly.

₩ NOTE: The voltage level is only checked when the starter is running.

See Also

Over Voltage Level parameter (PFN 10) on page 81. Voltage Trip Time parameter (PFN 12) on page 81. Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Rated Voltage parameter (FUN 05) on page 103.

Over/Under Voltage Trip Delay Time

PFN 12

LCD Display

PFN:Vlt Trip Tim 12 0.1 sec

Range

0.1 - 90.0 seconds (**Default: 0.1**)

Description

The Voltage Trip Time parameter sets the period of time that either an over voltage or under voltage condition must exist before a fault occurs.

See Also

Over Voltage Level parameter (PFN 10) on page 81. Under Voltage Level parameter (PFN 11) on page 81.

Auto Reset parameter (PFN 23) on page 84.

Controlled Fault Stop Enable parameter (PFN 25) on page 85.

Phase Loss Trip Time

PFN 13

LCD Display

PFN:Ph Loss Time 13 0.2 sec

Range 0.1 - 5.0 seconds (**Default: 0.2**)

Description The Phase Detect Delay parameter sets the delay time on Fault #27: "Phase Loss." This fault detects a loss of

proper phase timing even when the phasing remains valid; example: loss of line when the motor back generates a voltage. This allows a much faster detection than low line or no current at run faults.

Over Frequency Trip Level

PFN 14

LCD Display

PFN: Over Frq Lvl 14 72 Hz

Range 24 – 72 Hz (**Default: 72**)

Description The Over Frequency Trip Level parameter sets the highest line frequency that the starter will operate on.

When operating on line power, the default setting will usually suffice. If the application is speed sensitive, or the line power is suspect, the Over Frequency Trip Level parameter can be set to the highest acceptable frequency. When operating on generator power, the Over Frequency Trip Level parameter should be set to the highest acceptable frequency. This will ensure that a generator problem will not cause unnecessarily large fluctuations in the speed of the motor.

The frequency must be above the over frequency trip level setting for the Frequency Trip Time (PFN 16) parameter before the starter will recognize a high frequency condition. Once a high frequency condition exists, the starter will shut down and display a Fault #13, "High Freq Trip."

Under Frequency Trip Level (PFN 15) on page 82. Frequency Trip Time (PFN 16) on page 83.

Under Frequency Trip Level

PFN 15

LCD Display

See Also

PFN: Undr Frq Lvl 15 23 Hz

Range 23 – 71 Hz (**Default: 23**)

Description The Under Frequency Trip Level parameter sets the lowest line frequency that the starter will operate on.

When operating on line power, the default setting will usually suffice. If the application is speed sensitive, or the line power is suspect, the Under Frequency parameter can be set to the lowest acceptable frequency. When operating on generator power, the Under Frequency parameter should be set to the lowest acceptable frequency. This will ensure that a generator problem will not cause unnecessarily large fluctuations in the speed of the motor.

The frequency must be below the under frequency setting for the Frequency Trip Time (PFN 16) parameter before the starter will recognize an under frequency condition. Once an under frequency condition exists, the starter will shut down and display a Fault #12, "Low Freq Trip."

See Also Over Frequency Trip Level (PFN 14) on page 82.

Frequency Trip Time (PFN 16) on page 83.

Frequency Trip Time

PFN 16

LCD Display

PFN: Frq Trip Tim 16 0.1 sec

0.1 - 90.0 seconds (**Default: 0.1**) Range

Description The Frequency Trip Time parameter sets the time that the line frequency must go above the Over Frequency

Trip Level (PFN 14) or below the Under Frequency Trip Level (PFN 15) parameter before a high or low

frequency fault will occur.

Over Frequency Level (PFN 14) on page 82. See Also

Under Frequency Level (PFN 15) on page 82.

PF Lead Trip Level

PFN 17

LCD Display

PFN: PF Lead Lvl OFF 17

Range Off, - 0.80 lag to +0.01 lead (Default: Off)

Description The amount of power factor lead before the specified PF Trip Time (PFN 19) fault will occur.

Power Factor Lag Trip Level (PFN 18) on page 83. See Also

Power Factor Trip Time (PFN 19) on page 83.

PF Lag Trip Level

PFN 18

LCD Display

PFN: PF Lag Lvl 18 OFF

Range Off, - 0.01 lag to +0.80 lead (Default: Off)

Description The amount of power factor lag before the specified PF Trip Time (PFN 19) fault will occur.

Power Factor Lead Trip Level (PFN 17) on page 83. See Also

Power Factor Trip Time (PFN 19) on page 83.

PF Trip Time PFN 19

LCD Display

PFN: PF Trip Time 19 10.0 sec

0.1 - 90.0 seconds (**Default: 10.0**) Range

Description The amount of time that the power factor lead level (PFN 17) or lag level (PFN 18) conditions must exist

beyond the window (PFN 19) before a trip will occur.

See Also Power Factor Lead Trip Level (PFN 17) on page 83.

Power Factor Lag Trip Level (PFN 18) on page 83.

Backspin Timer

PFN 20

LCD Display

PFN: Backspin Tim 20 Off

Range Off, 1 – 180 minutes (Default: Off)

Description The Backspin Timer parameter sets the minimum time between a stop and the next allowed start. If the starter

is stopped and a time has been set, the starter will display a backspin lockout and the time until the next

allowed start in the bottom right of the display.

Time Between Starts

PFN 21

LCD Display

PFN: Time Btw St 21 Off

Range Off, 1 – 180 minutes (**Default: Off**)

DescriptionThe Time Between Starts parameter sets the minimum allowed time between starts. Once a start command

has been given, the next start cannot be performed until this time has expired. If the starter is stopped and the time between starts has yet to expire, the starter will display a time btw starts lockout and the time until the

next start is allowed in the bottom left of the display.

₩ NOTE: The TBS timer is not activated by a PORT restart.

Starts per Hour

PFN 22

LCD Display

PFN: Starts/Hour 22 Off

Range Off, 1 – 6 (Default: Off)

DescriptionThe Starts per Hour parameter will set the number of allowed starts in one hour. If the starter has been stopped and the number of starts given in the last hour has exceeded this setting, the starter will display a

starts per hour lockout and the time until the next start is allowed in the bottom right of the display.

₩ NOTE: The Starts/Hour counter does not increment on a PORT restart.

Auto Fault Reset Time

PFN 23

LCD Display

PFN: AutoReset 23 Off

Range Off, 1 – 900 seconds (Default: Off)

Description The Auto Reset parameter sets the time delay before the starter will automatically reset a fault. For the list of

faults that may be auto reset, refer to Appendix B - Fault Codes on page 183.

₩ NOTE: A start command needs to be initiated once the timer resets the fault.

₩ NOTE: If the Auto Reset feature is used, CAUTION must be exercised to assure that any restart occurs in

a safe manner.

See Also

Appendix C - Fault Codes on page 183.

Auto Fault Reset Count Limit parameter (PFN 24) on page 85.

Auto Fault Reset Count Limit

PFN 24

LCD Display

PFN: Auto Rst Lim
24 Off

Range

Off, 1-10 (Default: Off)

Description

The Auto Reset Limit parameter sets the number of times that an auto fault reset may be performed. Once the number of auto reset counts have been exceeded, the starter will lockout until a manual fault reset is performed.

If less than the maximum number of auto resets occur and the starter does not fault for 15 minutes after the last auto fault reset occurred, the counter will be set back to zero. The auto reset counter is also set back to zero when a manual fault reset occurs.

See Also

Appendix C - Fault Codes on page 183.

Auto Reset Limit parameter (PFN 23) on page 84.

Controlled Fault Stop Enable

PFN 25

LCD Display

PFN: Ctrl Flt En 25 On

Range

Off / On (Default: On)

Description

A Controlled Fault Stop Enable can occur if this parameter is "On". The controlled stop will occur before the starter trips. During a controlled fault stop, the action selected by the Stop Mode () parameter is performed before the starter is tripped. This prevents the occurrence of water hammer etc. in sensitive systems when a less than fatal fault occurs.

₩ NOTE: All relays except the UTS relay are held in their present state until the stop mode action has been completed.

₩ NOTE: Only certain faults can initiate a controlled fault stop. Some faults are considered too critical and cause the starter to stop immediately regardless of the Controlled Fault Stop Enable parameter.

Refer to Appendix C - Fault Codes to determine if a fault may perform a controlled stop.

See Also

Stop Mode parameter (CFN 15) on page 70. Appendix C - Fault Codes on page 183.

Speed Switch Trip Time

PFN 26

LCD Display

PFN:Speed Sw Tim 26 Off

Range

Off, 1 – 250 seconds (Default: Off)

Description

When using the zero speed stall protection, the starter will start monitoring the zero speed input as soon as a run command is given and will recognize a stalled motor if the zero speed time has elapsed before the zero speed signal is removed. The zero speed input requires a high or low signal to indicate the zero speed condition.

Fault Code #04 - Speed Switch Timer will be displayed when a stalled motor condition is detected.

See Also

Digital Inputs (I/O 01 - 08) on page 90.

Motor PTC Trip Time

PFN 27

LCD Display

PFN: M PTC Time 27 Off

Range

Off, 1-5 seconds (**Default: Off**)

Description

The soft starter has the capability to monitor a PTC (Positive Temperature Coefficient) thermistor signal from the motor. The thermistors will provide a second level of thermal protection for the motor. There is no PTC input required when set to "Off".

% NOTE: A motor PTC Fault #F05 occurs if resistance exceeds 3.5K ohm (+/- 300 ohms). The starter is locked out until the resistance drops below 1.65K ohm (+/- 150 ohms).

% NOTE: Open terminals will give an F05 fault immediately if this parameter is not set to "Off". The input is designed for DIN44081 and DIN44082 standard thermistors.

Independent Starting/Running Overload PFN 28

LCD Display

PFM: Indep S/R OL 28 Off

Range

Off / On (Default: Off)

Description

If "Off"

When this parameter is "Off" the overload defined by the Motor Running Overload Class parameter (QST 03) is active in all states.

If "On"

When this parameter is "On", the starting and running overloads are separate with each having their own settings. The starting overload class is used during motor acceleration and acceleration kick. The running overload class is used during all other modes of operation.

If both the running overload and the starting overload classes are set to "Off", then the existing accumulated motor OL% is erased and no motor overload is calculated in any state.

If the starting overload class is set to "Off" and the running overload class is set to "On", then the I^2 t motor overload does NOT accumulate during acceleration kick and acceleration ramping states. However, the existing accumulated OL% remains during starting and the hot/cold motor compensation is still active. The OL% is capped at 99% during starting.

Although there is really no reason to do so, the starting overload class could be set to "On" and the running overload class set to "Off".

See Also

Motor Starting Overload Class parameter (PFN 29) on page 87. Motor Running Overload Class parameter (PFN 30) on page 87.

Motor Overload Hot/Cold Ratio parameter (PFN 31) on page 88. Motor Overload Cooling Time parameter (PFN 32) on page 88.

Theory of Operation section 7.1.9, Separate Starting and Running Motor Overload Settings on page 119.

Motor Starting Overload Class

PFN 29

LCD Display

PFN: Starting OL 29 10

Range

Off, 1 - 40 (**Default: 10**)

Description

The Motor Starting Overload Class parameter sets the class of the electronic overload when starting. The starter stores the thermal overload value as a percentage value between 0 and 100%, with 0% representing a "cold" overload and 100% representing a tripped overload.

The starting overload class is active during Kicking and Ramping when the Independent Starting/Running Overload parameter is set to "On".

When the Motor Starting Overload Class parameter is set to "Off", the electronic overload is disabled while starting the motor.

₩ NOTE: Care must be taken not to damage the motor when turning the starting overload class off or setting to a high value.

ℜ NOTE: Consult motor manufacturer data to determine the correct motor OL settings.

See Also

Independent Starting/Running Overload parameter (PFN 28) on page 86.

Motor Running Overload Class parameter (PFN 30) on page 87.

Motor Overload Hot/Cold Ratio parameter (PFN 31) on page 88.

Motor Overload Cooling Time parameter (PFN 32) on page 88.

Relay Output Configuration parameters (I/O 10-15) on page 91.

Theory of Operation section 7.1, Solid State Motor Overload Protection on page 114.

Motor Running Overload Class

PFN 30

LCD Display:

PFN: Running OL 30 10

Range

Off, 1-40 (Default: 10)

Description

The Motor Running Overload Class parameter sets the class for starting and running if the parameter is set to "Off". If separate starting versus running overload classes are desired, set the parameter to "On".

The Motor Running Overload Class parameter sets the class of the electronic overload when up to speed and stopping. The starter stores the thermal overload value as a percentage value between 0 and 100%, with 0% representing a "cold" overload and 100% representing a tripped overload. See section 7.1, for the overload trip time versus current curves.

When the parameter is set to "Off", the electronic overload is disabled when up to speed and a separate motor overload protection device must be supplied.

ૠ NOTE: Care must be taken not to damage the motor when turning the running overload class off or setting a high value.

ℜ NOTE: Consult motor manufacturer data to determine the correct motor overload settings.

See Also

Independent Starting/Running Overload parameter (PFN 28) on page 86.

Motor Starting Overload Class parameter (PFN 29) on page 87.

Motor Overload Hot/Cold Ratio parameter (PFN 31) on page 88.

Motor Overload Cooling Time parameter (PFN 32) on page 88.

Relay Output Configuration parameter (I/O 10-15) on page 91.

Theory of Operation section 7.1, Solid State Motor Overload Protection on page 114.

Motor Overload Hot/Cold Ratio

PFN 31

LCD Display

Range

0 - 99 % (Default: 60)

Description

The Motor Overload Hot/Cold Ratio parameter defines the steady state overload content (OL_{ss}) that is reached when the motor is running with a current less than full load current (FLA) * Service Factor (SF). This provides for accurate motor overload protection during a "warm" start.

The steady state overload content is calculated by the following formula.

$$OL_{ss} = OL \; H/C \; Ratio \times \frac{Current}{FLA} \times \frac{1}{Current \; Imbalance \; Derate \; Factor}$$

The rise or fall time for the overload to reach this steady state is defined by the Motor Overload Cooling Time (PFN 32) parameter.

The default value of 60% for Motor Overload Hot/Cold Ratio parameter is typical for most motors. A more accurate value can be derived from the hot and cold locked rotor times that are available from most motor manufacturers using the following formula.

OL H/C Ratio =
$$\left(1 - \frac{\text{Max Hot Locked Rotor Time}}{\text{Max Cold Locked Rotor Time}}\right) \times 100\%$$

₩ NOTE: Consult motor manufacturer data to determine the correct motor overload settings.

See Also

Independent Starting/Running Overload parameter (PFN 28) on page 86.

Motor Running Overload Class parameter (PFN 30) on page $87.\,$

Motor Starting Overload Class parameter (PFN 29) on page 87.

Motor Overload Cooling Time parameter (PFN 32) on page 88.

Relay Output Configuration parameters (I/O 10-15) on page 91.

Theory of Operation section 7.1.6, Hot/Cold Motor Overload Compensation on page 116.

Motor Overload Cooling Time

PFN 32

LCD Display

Range

1.0 – 999.9 minutes (**Default: 30.0**)

Description

The Motor Overload Cooling Time parameter is the time to cool from 100% to less than (<) 1%. When the motor is stopped, the overload content reduces exponentially based on Motor Overload Cooling Time parameter.

Refer to the following equation:

OL Content = OL Content when Stopped *
$$e^{\frac{5}{CoolingTime}t}$$

So, a motor with a set cooling time of 30 minutes (1800 sec) with 100% accumulated OL content cools to <1% OL content in 30 minutes.

₩ NOTE: Consult motor manufacturer data to determine the correct motor cooling time.

See Also

Independent Starting/Running Overload parameter (PFN 28) on page 86.

Motor Running Overload Class parameter (PFN 30) on page 87. Motor Starting Overload Class parameter (PFN 29) on page 87. Motor Overload Hot/Cold Ratio parameter (PFN 31) on page 88.

Theory of Operation section 7.1.10, Motor Cooling While Stopped on page 120. Theory of Operation section 7.1.11, Motor Cooling While Running on page 121.

Motor OL Alarm Level

PFN 33

LCD Display

PFN: OL Alarm Lvl 33 90 %

Range

1-100 % (Default: 90)

Description

An overload alarm condition is declared when the accumulated motor overload content reaches the programmed OL Alarm Level. An output relay can be programmed to change state when a motor overload alarm condition is present to warn of an impending motor overload fault.

See Also

Relay Output Configuration parameters (I/O 10-15) on page 91.

Theory of Operation section 7.1, Solid State Motor Overload Protection on page 114.

Motor OL Lockout Level

PFN 34

LCD Display

PFN:OL Lock Lvl 34 15 %

Range

1 – 99 % (Default: 15)

Description

After tripping on an overload, restarting is prevented and the starter is "locked out" until the accumulated motor overload content has cooled below the programmed Motor OL Lockout Level.

See Also

Theory of Operation section 7.1, Solid State Motor Overload Protection on page 114.

Motor OL Auto Lockout Level

PFN 35

LCD Display

PFN:OL Lock Calc 35 Off

Range

Off, Auto (Default: Off)

Description

The MX³ has the capability to automatically calculate a motor OL lockout release level. This level shall be calculated so that the OL lockout is cleared when there is enough OL content available to start the motor without tripping the OL. This prevents the motor from being started if the O/L will trip during the start.

The value shall be calculated based on OL content used for the past four (4) successful motor starts. A factor of 1.25 shall be applied as a safety margin.

Example:

The OL content used for the past 4 starts were 30%, 29%, 30%, 27%

Average OL content used is 29% (using integer math).

Multiply result by 1.25 -> 36%

The new calculated motor OL lockout release level will be 100% - 36% -> 64%

The starting OL% content shall be latched when a start command is given. A value for OL content used

during a start shall only be added to the list if the motor start fully completes the start (i.e. the starter reaches up to speed).

 \Re NOTE: This feature should not be used on systems where the starting load varies greatly from start to

start

See Also Motor OL Lockout Level (PFN 34) on page 89.

Theory of Operation 7.1, Solid State Motor Overload Protection on page 114.

Jump to Parameter

I/O 00

LCD Display

I/O: Jump Code 00 1

Description

By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter within that group.

Digital Input Configuration

I/O 01 - I/O 08

LCD Display

I/O: DI 1 Config 01 Stop

I/O: DI 4 Config 04 Off

I/O: DI 7 Config 07 Off I/O: DI 2 Config 02 Off

I/O: DI 5 Config 05 Off

I/O: DI 8 Config 08 Off I/O:DI 3 Config 03 Off

I/O:DI 6 Config 06 Off

Range LCD Description

Off, Not Assigned, Input has no function. (Default DI02 -DI08)

Stop Command for 3-wire control. (Default DI 1)

Fault High Fault High, Fault when input is asserted, 120V applied. See (I/O 09) on page 91. Fault Low Fault Low, Fault when input is de-asserted, 0V applied. See (I/O 09) on page 91.

Fault Reset Reset when input asserted, 120V applied.

Disconnect Disconnect switch monitor.

Inline Cnfrm Inline contactor feedback.

Bypass Cnfrm Bypass/2M, bypass contactor feedback, 2M contactor feedback in

full voltage or Wye-delta.

E OL Reset Emergency Motor Overload content reset. After an OL trip has

occurred. Reset when input asserted, 120V applied.

Local/Remote Local/Remote control source, Selects whether the Local Source

parameter or the Remote Source parameter is the control source. Local Source is selected when input is de-asserted, 0V applied. Remote Source selected when input asserted, 120V applied.

Heat Disable Heater disabled when input asserted, 120V applied.

Heat Enable Heater enabled when input asserted, 120V applied.

Ramp Select Ramp 2 is enabled when input asserted, 120V applied.

Slow Spd Fwd Operate starter in slow speed forward mode.
Slow Spd Rev Operate starter in slow speed reverse mode.

Brake Disabl Disable DC injection braking.
Brake Enabl Enable DC injection braking.

Speed Sw NO Speed Switch Normally Open, 0V applied. See (PFN 26) on page 85. Speed Sw NC Speed Switch Normally Closed, 120V applied. See (PFN 26) on page 85.

Description I/O 01-03 pa

I/O 01-03 parameters configure which features are performed by the DI 01 to DI 03 terminals. I/O 04-08 parameters configure which features are performed by the DI 04 to DI 08 terminals.

See Also Local Source parameter (QST 04) on page 59.

Remote Source parameter (QST 05) on page 60. Bypass Feedback Time parameter (I/O 25) on page 96. Heater Level parameter (FUN 08) on page 104.

Theory of Operation section 7.1.12, Emergency Motor Overload Reset on page 121. Theory of Operation section 7.3.6, Dual Acceleration Ramp Control on page 128.

Theory of Operation section 7.7, Wye-Delta Operation on page 140.

Theory of Operation section 7.9, Start/Stop Control with a Hand/Off/Auto Selector Switch on page 144.

Digital Fault Input Trip Time

I/O 09

LCD Display

I/O: Din Trp Time 09 0.1 sec

Range 0.1 - 90.0 Seconds (Default: 0.1 Sec)

The Digital Fault Input Trip Time parameter sets the length of time the digital input must be high or low **Description:**

before a trip occurs. This delay time only functions for fault high and fault low.

Digital Input Configuration parameter on page 90. See Also

Relay Output Configuration

I/O 10 - 15

LCD Display

I/O: R1 Confiq 10 Fault FS

I/O: R2 Confiq 11 Off

I/O: R3 Confiq 12 Off

I/O: R4 Confiq 13

I/O: RS Confiq OFF 14 OFF

I/O: R6 Config 15 OFF

LCD Range Description

> Off Off, Not Assigned. May be controlled over Modbus (Default: R - 2, 3, 4, 5, 6)

Fault FS Faulted – Fail Safe operation. Energized when no faults present, de-energized when

faulted. (Default: R1)

Fault NFS Faulted- Non Fail Safe operation. Energized when faulted. Running Running, starter running, voltage applied to motor.

UTS Up to Speed, motor up to speed or transition to for Wye/Delta Operation.

Alarm Alarm, any alarm condition present. Ready Ready, starter ready for start command.

Locked Out Locked Out.

OverCurrent Over Current Alarm, over current condition detected. UnderCurrent Under Current Alarm, under current condition detected.

OL Alarm Overload Alarm.

Shunt FS Shunt Trip Relay – Fail Safe operation, energized when no shunt trip, fault present,

de-energized on shunt trip fault.

Shunt NFS Shunt Trip Relay - Non Fail Safe operation, de-energized when no shunt trip fault

present, energized on shunt trip fault.

Ground Fault A Ground Fault trip has occurred. Energy Saver Operating in Energy Saver Mode.

Heating Motor Heating, starter applying heating pulses to motor.

Slow Spd Starter operating in slow speed mode.

Starter operating in slow speed forward mode. Slow Spd Fwd Slow Spd Rev Starter operating in slow speed reverse mode. Starter is applying DC brake current to motor. Braking

Cool Fan Ctl Heatsink fan control.

PORT Energized when the starter is in the Power Outage Ride Through mode. Tach Loss Energized when the starter has faulted on a Tachometer Loss of Signal Fault.

Description Parameters I/O 10-12 configure which functions are performed by the R1 to R3 relays located on MX³ card.

Parameters I/O 13-15 configure which functions are performed by the R4 to R6 relays located on I/O card.

See Also Up To Speed Time parameter (QST 09) on page 62.

Over Current Level parameter (PFN 01) on page 76. Under Current Level parameter (PFN 03) on page 77.

Residual Ground Fault Level parameter (PFN 07) on page 79.

Inline Configuration parameter (I/O 24) on page 96. Heater Level parameter (FUN 08) on page 104. Energy Saver parameter (FUN 09) on page 106.

Theory of Operation section 7.1, Motor Overload Operation on page 114. Theory of Operation section 7.7, Wye-Delta Operation on page 140.

Theory of Operation section 7.8, Across The Line (Full Voltage Starter) on page 143.

Appendix C - Fault Codes on page 183.

Analog Input Trip Type

I/O 16

LCD Display

I/O:Ain Trp Type 16 Off

Range LCD Description

Off Off, Disabled. (Default)

Low Level Low, Fault if input signal below preset trip level. High Level High, Fault if input signal above preset trip level.

Description

The analog input is the reference input for a starter configured as a Phase Controller or Current Follower. In addition, the Analog Input Trip parameter allows the user to set a "High" or "Low" comparator based on the analog input. If the type is set to "Low", then a fault occurs if the analog input level is below the trip level for longer than the trip delay time. If the type is set to "High", then a fault occurs if the analog input level is above the trip level for longer than the trip delay time. This function is only active when the motor is running.

This feature can be used in conjunction with using the analog input as a reference for a control mode in order to detect an open 4-20mA loop providing the reference. Set the Analog Input Trip Type parameter to "Low" and set the Analog Trip Level parameter to a value less than (<) 20%.

See Also

Analog Input Trip Level parameter (I/O 17) on page 92.

Analog Input Trip Time/Level parameter (I/O 18) on page 93.

Analog Input Span parameter (I/O 19) on page 93.

Analog Input Offset parameter (I/O 20) on page 94.

Starter Type parameter (FUN 07) on page 103.

Analog Input Trip Level

I/O 17

LCD Display

I/O:Ain Trp Lvl 17 50 %

Range

0 – 100 % (**Default: 50**)

Description

The Analog Input Trip Level parameter sets the analog input trip or fault level.

This feature can be used to detect an open 4-20mA loop by setting the Analog Input Trip Type (I/O 16) parameter to "Low" and setting the Analog Input Trip Level (I/O 17) parameter to a value less than (<) 20%.

\mathbb{H} NOTE: The analog input trip level is NOT affected by the Analog Input Offset or Analog Input Span parameter settings. Therefore, if the trip level is set to 10% and the Analog Input Trip Type parameter is set to "Low", a fault occurs when the analog input signal level is less than (<) 1V or 2mA regardless of what the Analog Input and Analog Input Span parameters values are set to.

See Also

Analog Input Trip Type parameter (I/O 16) on page 92. Analog Input Span parameter (I/O 19) on page 93. Analog Input Offset parameter (I/O 20) on page 94.

Analog Input Trip Delay Time

I/O 18

LCD Display

I/O:Ain Trp Tim 18 0.1 sec

Range

0.1 - 90.0 seconds (**Default: 0.1**)

Description

The Analog Input Trip Time parameter sets the length of time the analog input trip level (I/O17) must be exceeded before a trip occurs.

See Also

Analog Input Trip Type parameter (I/O 16) on page 92. Analog Input Trip Level parameter (I/O 17) on page 92. Analog Input Span parameter (I/O 19) on page 93. Analog Input Offset parameter (I/O 20) on page 94.

Analog Input Span

I/O 19

LCD Display

I/O: Ain Span 19 100 %

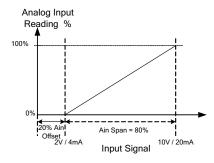
Range

1 - 100 % (Default: 100)

Description

The analog input can be scaled using the Analog Input Span parameter.

Examples:


For a 0-10V input or 0-20mA input, a 100% Analog Input Span setting results in a 0% input reading with a 0V input and a 100% input reading with a 10V input.

For a 0-5V input, a 50% Analog Input Span setting results in a 0% input reading with a 0V input and a 100% input reading with a 5V input.

For a 4-20mA input, a 80% Analog Input Span setting and a 20% Analog Input Offset setting results in a 0% input reading at 4mA and a 100% input reading at 20mA.

 $\ensuremath{\mathtt{\#}}$ NOTE: Input signal readings are clamped at a 100% maximum.

Example: 4ma = 0% input, 20ma = 100% input

See Also

Analog Input Trip Level parameter (I/O 17) on page 92. Analog Input Trip Time parameter (I/O 18) on page 93.

Analog Input Offset parameter (I/O 20) on page 94. Starter Type parameter (FUN 07) on page 103.

Analog Input Offset

I/O 20

LCD Display

I/O: Ain Offset 20 0 %

Range 0 - 99 % (**Default: 0**)

Description The analog input can be offset so that a 0 % reading can occur when a non-zero input signal is being applied.

Example: Input level of 2V (4mA) => 0% input. In this case the Analog Input Offset parameter should be set to 20% so that the 2V (4mA) input signal results in a 0% input reading.

NOTE: For a 4-20mA input, set the Analog Input Span to 80 % and the Analog Input Offset to 20 %.

¥ NOTE: The measured input reading is clamped at 0 % minimum.

See Also Analog Input Trip Level parameter (I/O 17) on page 92.

Analog Input Trip Time parameter (I/O 18) on page 93. Analog Input Span parameter (I/O 19) on page 93. Starter Type parameter (FUN 07) on page 103.

Analog Output Function

I/O 21

LCD Display

I/O: Aout Fctn 21 Off

Range LCD Description

Off, Disabled (Default) 0 - 200% Curr Based on per cycle RMS values 0 - 800% Curr Based on per cycle RMS values 0-150% Volt Based on per cycle RMS values 0 - 150% OLMotor Thermal Overload 0 - 10 kWBased on filtered V and I values 0 - 100 kWBased on filtered V and I values Based on filtered V and I values $0-1\ MW$ 0-10 MWBased on filtered V and I values

0 – 100% Ain The output value takes into account the inputs span and offset settings

0 – 100% Firing Output Voltage to Motor, based on SCR firing angle

Calibration Calibration, full (100%) output

Description The Analog Output Function parameter selects the function of the analog output. The available analog output

function selections and output scaling are shown below. The analog output is updated every 25msec.

See Also Analog Output Span parameter (I/O 22) on page 95.

Analog Output Offset parameter (I/O 23) on page 95.

Analog Output Span

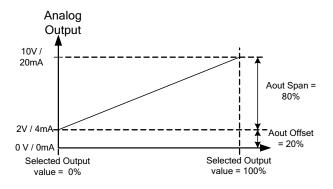
I/O 22

LCD Display

I/O: Aout Span 22 100 %

Range

1 – 125 % (Default: 100)


Description

The analog output signal can be scaled using the Analog Output Span parameter. For a 0-10V output or 0-20mA output, a 100% scaling outputs the maximum voltage (10V) or current (20mA) when the selected output function requests 100% output. A scale of 50% outputs 50% voltage/current when the analog output function requests a 100% output.

NOTE: For a 4-20mA output, set the Analog Output Span to 80% and the Analog Output Offset to 20%.

₩ NOTE: The output does not exceed 100% (10V or 20mA).

Example: 0% output => 4mA, 100% output => 20ma

See Also

Analog Output Offset parameter (I/O 23) on page 95.

Analog Output Offset

I/O 23

LCD Display

I/O: Aout Offset 23 0 %

Range

0 - 99 % (Default: 0)

Description

The analog output signal can be offset using the Analog Output Offset parameter. A 50% offset outputs a 50% output (5V in the 10V case) when 0% is commanded. If the selected variable requests 100% output, the span should be reduced to (100 minus offset) so that a 100% output request causes a 100% output voltage (x% offset + (100-x)%span)=100%.

 $\label{eq:mote:power} \mbox{\ensuremath{\mathtt{H}}\xspace{0.05em} NOTE: For a 4-20mA output, set the Analog Output Span to 80\% and the Analog Output Offset to 20\%.}$

See Also

Analog Output Span parameter (I/O 22) on page 95.

Inline Configuration

I/O 24

LCD Display

I/O:Inline Confg 24 3.0 sec

Range

Off, 0 - 10.0 seconds (**Default: 3.0**)

Description

The Inline Configuration parameter controls the behavior of the No Line warning, No Line fault, and the Ready relay function.

If the Inline Configuration parameter is set to "Off", then the MX^3 assumes that there is no Inline contactor and that line voltage should be present while stopped. If no line is detected, then a No Line alarm condition exists and the ready condition does not exist. If a start is commanded, then a No Line fault is declared.

If the Inline Configuration parameter is set to a time delay, then the MX³ assumes that there is an Inline contactor and that line voltage need not be present while stopped. If no line is detected, then the No Line alarm condition does not exist and the ready condition does exist. If a start is commanded and there is no detected line voltage for the time period defined by this parameter, then a "noL" (No Line) fault is declared.

In order to control an inline contactor, program a relay as a Run relay.

₩ NOTE: This fault is different than over/under voltage since it detects the presence of NO line.

See Also

Relay Output Configuration parameters (I/O 10-15) on page 91.

Bypass Feedback Time

I/O 25

LCD Display

I/O:Bpas Fbk Tim 25 2.0 sec

Range

0.1 - 5.0 seconds (**Default: 2.0**)

Description

The starter contains a built in dedicated bypass feedback input that is enabled when the dedicated stack relay is factory programmed to "bypass". The programmable inputs DI 1, DI 2, DI 3, DI4, DI5, DI6, DI7 or DI8 may also be used to monitor an auxiliary contact from the bypass contactor(s) or in the case of a wye-delta starter the 2M contactor. The digital input is expected to be in the same state as the UTS relay. If it is not, the MX³ trips on Fault 48 (Bypass Fault).

The Bypass Confirmation input must be different from the UTS relay for the time period specified by this parameter before a fault is declared. There is no alarm associated with this fault.

See Also

Digital Input Configuration parameters (I/O 01-08) on page 90. Theory of Operation section 7.7, Wye-Delta Operation on page 140.

Keypad Stop Disable

I/O 26

LCD Display

I/O:Keypad Stop 26 Enabled

Range

LCD Description

Disabled Keypad Stop does not stop the starter
Enabled Keypad Stop does stop the starter (**Default**)

Description

If "Disabled"

When this parameter is set to "Disabled", the keypad Stop button is de-activated. This should be done with caution, as the [STOP] will not stop the starter.

If the keypad is selected as local or remote control sources, the [STOP] key cannot be disabled.

If "Enabled"

When this parameter is set to "Enabled", the keypad stop button is enabled and stops the starter regardless of the selected control source (keypad, terminal or serial).

See Also

Local Source parameter (QST 04) on page 59. Remote Source parameter (QST 05) on page 60.

Auto Start Selection

I/O 27

LCD Display

I/O: Auto Start 27 Disabled

Range

LCD Description

Disabled When Disabled, the Start input must always transition from low to high

for a start to occur. (Default)

Power When set to Power, a start will occur if the Start input is high while

control power is applied.

Fault When set to Fault, a start will occur if the Start input is high when a

fault is reset.

Power, Fault When set to Power and Fault, a start will occur if the Start input is

high while control power is applied, and a start will occur if the Start

input is high when a fault is reset.

Description

The Auto Start Selection parameter determines whether or not a transition from low to high is required on the Start input for a start to occur after either a power up or a fault reset. This applies to lockout conditions being cleared as well. The behavior for a lockout clearing is the same as for a fault being reset.

Jump to Parameter

RTD 00

LCD Display

RTD: Jump Code 00 1

Description

By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter within that group.

RTD Module #1 Address

RTD 01

LCD Display

RTD:RTDMod1 Addr 01 Off

Range

Off, 16 to 23 (Default Off)

Description

The module #1 address parameter has to be set to the Modbus address of the first RTD module attached to the soft-starter. The address of the RTD module can be verified by checking the rotary switch on the top of the RTD module.

RTD Module #2 Address

RTD 02

LCD Display

RTD:RTDMod2 Addr 02 Off

Range Off, 16 to 23 (Default Off)

Description The module #2 address parameter has to be set to the Modbus address of the second RTD module attached to

the soft-starter. The address of the RTD module can be verified by checking the rotary switch on the top of

the RTD module. Ensure that module #2 is not set to the same address as module #1.

RTD Group

RTD 03 - RTD 18

LCD Display

RTD:RTD 1 Group 03 Off RTD: RTD ? Group ?? Off

(? = RTD number) (?? = menu index number)

Range LCD Description

Off RTD channel not read.

Stator RTD included in Stator metering group.
Bearing RTD included in Bearing metering group.

Other RTD acts independently.

Description Each of the 16 available RTD input channels has a parameter to assign that RTD channel to a grouping.

K NOTE: RTD 1 - 8 is on module 1. RTD 9 - 16 is on module 2.

Stator Alarm Level

RTD 19

LCD Display

RTD: Stator Alrm 19 200 C

Range 1 – 200 °C (**Default 200** °C)

Description The Stator Alarm Level parameter selects its Alarm temperature level. When an RTD in this group reaches

Alarm level an alarm condition will be declared. This parameter sets the alarm level for any RTD set to

"Stator".

₩ NOTE: Consult motor manufacturer.

Bearing Alarm Level

RTD 20

LCD Display

RTD: Bearing Alrm 20 200 C

Range 1 – 200°C (**Default 200** °C)

Description

The Bearing Alarm Level parameter selects its Alarm temperature level. When an RTD in this group reaches Alarm level an alarm condition will be declared. This parameter sets the alarm level for any RTD set to "Bearing".

₩ NOTE: Consult Motor Manufacturer.

Other Alarm Level RTD 21

LCD Display

RTD: Other Alrm 21 200 C

Range 1-200 °C (Default 200 °C)

Description The Other Alarm Level parameter selects its Alarm temperature level. When an RTD in this group reaches

Alarm level an alarm condition will be declared. This parameter sets the alarm level for any RTD set to

"Other".

₩ NOTE: Consult motor manufacturer.

Stator Trip Level RTD 22

LCD Display

RTD: Stator Trip 22 200 C

Range 1 – 200 °C (Default 200 °C)

Description This parameter sets the stator trip temperature when a trip will occur. Fault delay time is 1 second.

Bearing Trip Level RTD 23

LCD Display

RTD: Bearing Trip 23 200 C

Range 1 – 200 °C (**Default 200°C**)

Description This parameter sets the bearing trip temperature when a trip will occur. Fault delay time is 1 second.

₩ NOTE: Consult motor manufacturer.

Other Trip Level RTD 24

LCD Display

RTD: Other Trip 24 200 C

Range 1 – 200°C (**Default 200°C**)

Description This parameter sets the other trip temperature when a trip will occur. Fault delay time is 1 second.

RTD Voting

RTD 25

LCD Display

RTD: RTD Voting 25 Disabled

Range Disabled, Enabled (Default: Disabled)

Description RTD Trip voting can be enabled for extra reliability in the event of a RTD malfunction. When RTD voting is

enabled, two (2) RTDs in one assigned group will need to exceed their trip temperature before a fault is

declared.

NOTE: If there is only one RTD assigned to a group the RTD voting will be disabled.

RTD Motor OL Biasing

RTD 26

LCD Display

RTD: RTD Biasing 26 Off

Range Off, On (Default: Off)

Description

When RTDs are present, active, and assigned to the stator group and when RTD biasing is enabled the stator RTD measurements will effect the motor OL content. RTD biasing works together with the I²t thermal model of the motor. In the RTD biasing case a three point approximation of motor overload capacity based on the highest measured stator RTD temperature is used. If the RTD motor overload capacity calculation exceeds the I²t based calculation then the RTD biasing value will be used. If the I²t value is higher then the I²t value will be used.

RTD Bias Curve

See Also RTD Biasing OL group in section 7.1.7, on page 118.

RTD Bias Minimum Level RTD 27

LCD Display

RTD:RTD Bias Min 27 40 C

Range 0 – 198 °C (**Default: 40** °C)

 $\textbf{Description} \hspace{1.5cm} \textbf{Typically set to ambient conditions (40 °C)}$

See Also RTD Biasing OL group in section 7.1.7 on page 118.

RTD Bias Midpoint Level

RTD 28

LCD Display

RTD:RTD Bias Mid 28 130 C

Range 1 – 199°C (**Default: 130°C**)

Description Typically set at the rated motor running temperature.

 $\mbox{\em MOTE}$: Consult motor manufacturer for information.

See Also RTD Biasing OL group in section 7.1.7, on page 118.

RTD Bias Maximum Level

RTD 29

LCD Display

RTD: RTD Bias Max 29 155 C

Range 105 – 200° C (Default: 155°C)

Description The stator insulation maximum temperature rating.

₩ NOTE: Consult motor manufacturer for information.

See Also RTD Biasing OL group in section 7.1.7, on page 118.

Jump to Parameter

FUN 00

LCD Display

FUN: Jump Code 00 1

Description By changing the value of this parameter and pressing [ENTER], you can jump directly to any parameter

within that group.

Meter FUN 01, 02

LCD Display

FUN: Meter 1 01 Ave Current

FUN: Meter 2 02 Ave Volts

Range LCD Description

Status Running State.

Ave Current Average current. (Default: Meter 1)

L1 Current Current in phase 1.
L2 Current Current in phase 2.
L3 Current Current in phase 3.
Curr Imbal Current Imbalance %.

Ground Fault Residual Ground Fault % FLA.

Ave Volts Average Voltage L-L RMS. (Default: Meter 2)

L1-L2 Volts Voltage in, L1 to L2 RMS.

6 - PARAMETER DESCRIPTION

vars

L2-L3 Volts Voltage in, L2 to L3 RMS. L3-L1 Volts Voltage in, L3 to L1 RMS. Thermal overload in %. Overload Power Factor Motor power factor. Motor real power consumed. Watts VA Motor apparent power consumed.

Motor reactive power consumed. kW hours Kilo-watt-hour used by the motor, wraps at 1,000. MW hours Mega-watt-hour used by the motor, wraps at 10,000.

Phase Order Phase Rotation. Line Frequency. Line Freq Analog In Analog Input %. Analog Out Analog Output %.

Run Days Running time in days, wraps at 2,730 days. Run Hours Running time in Hours and Minutes, wraps at 24:00.

Starts Number of Starts, wraps at 65,536.

TruTorque % TruTorque %. Power % Power %.

Peak starting current. Pk accel Curr Last Start T Last starting duration. Zero Seq GF Zero sequence ground fault. Stator Temp Highest Stator temperature. Bearing Temp Highest Bearing temperature. Other Temp Highest Other temperature. All Temp Highest of all temperatures.

Description Parameters FUN 01 and FUN 02 configure which meters are displayed on the two lines of the main display

screen.

CT Ratio FUN 03

LCD Display

FUN: CTRatio 03 50:5

72:1, 96:1, 144:1, 288:1, 864:1, 2640:1, 3900:1, 5760:1, 8000:1, 14400:1, 28800:1, 50:5, 150:5, 250:5, 800:5, Range

2000:5, 5000:5 (Default: 288:1)

Description The CT Ratio parameter must be set to match the CTs (current transformers) supplied with the starter. This

allows the starter to properly calculate the current supplied to the motor.

₩ NOTE: It is very important that the CT ratio is set correctly. Otherwise, many starter functions will not operate correctly.

Input Phase Sensitivity

FUN 04

LCD Display

FUN:Phase Order 04 Insensitive

LCD Range Description

Insensitive Runs with any three phase sequence. (Default)

ABC Only runs with ABC phase sequence. CBA Only runs with CBA phase sequence.

Single phase Single Phase.

Description The Phase Order parameter sets the phase sensitivity of the starter. This can be used to protect the motor from

a possible change in the incoming phase sequence. If the incoming phase sequence does not match the set

phase rotation, the starter displays an alarm while stopped and faults if a start is attempted.

Rated RMS Voltage

FUN 05

LCD Display

FUN: Rated Volts 05 2200 Vlt

Range

100, 110, 120, 200, 208, 220, 230, 240, 350, 380, 400, 415, 440, 460, 480, 500, 525, 575, 600, 660, 690, 800, 1000, 1140, 2200, 2300, 2400, 3300, 4160, 4600, 4800, 6000, 6600, 6900, 10.00K, 11.00K, 11.50K, 12.00K, 12.47K, 13.20K, 13.80K (**Default: 480**)

Description

The Rated Voltage parameter sets the line voltage that is used when the starter performs Over and Under line voltage calculations. This value is the supply voltage, NOT the motor utilization voltage.

₩ NOTE: Settings above 1140V are for medium voltage applications.

% NOTE: Rated Voltage must be set properly for the starter to operate properly.

See Also

Over Voltage Level parameter (PFN 10) on page 81. Under Voltage Level parameter (PFN 11) on page 81. Voltage Trip Time parameter (PFN 12) on page 81. Meter parameter (FUN 01, FUN 02) on page 101.

Motor Rated Power Factor

FUN 06

LCD Display

FUN: Motor PF 06 -0.92

Range

-0.01 lag to 1.00 unity (Default: -0.92)

Description

The Motor Rated Power Factor parameter sets the motor power factor value that is used by the MX³ starter for TruTorque and Power control calculations and metering calculations.

If TruTorque or Power acceleration and/or deceleration control is used, it is very important to properly set this parameter to the motor's full load rated power factor (usually available on the motor nameplate or from the motor manufacturer). For a typical induction motor, this value is between 0.80 and 0.95.

If the motor rated power factor is not available from either the motor nameplate or the motor manufacturer, the value can be obtained by viewing the power factor meter.

With the motor running at full name plate current, view the power factor meter by pressing the [UP] arrow key until the Motor PF meter is displayed using the LCD display.

The meter value can be entered into the Rated Power Factor parameter.

See Also

Meter parameters (FUN 01, FUN 02) on page 101.

Theory of Operation section 7.3.3, TruTorque Acceleration Control Settings and Times on page 124. Theory of Operation section 7.3.4, Power Control Acceleration Settings and Times on page 126.

Starter Type

FUN 07

LCD Display

FUN: Starter Type 07 Normal

Range

LCD Description

Normal Normal Reduced Voltage Soft Starter RVSS. (Default)

Inside Delta Inside Delta, RVSS. - Consult Factory

Wye-Delta Wye Delta.

Phase Ctl Open Loop Phase control using external analog input reference. - Consult Factory

6 - PARAMETER DESCRIPTION

Curr Follow Closed Loop Current follower using external analog input reference. - Consult Factory

ATL Across the line (Full Voltage).

Description The MX³ has been designed to be the controller for many control applications; Solid State Starter, both

Normal (outside Delta) and Inside Delta, and electro mechanical starters, Wye Delta, Across the line full voltage starter, Phase Control/Voltage Follower, Current Follower. In each case, the MX³ is providing the

motor protection and the necessary control for these applications.

See Also Input Phase Sensitivity parameter (FUN 04) on page 102.

Theory of Operation section 7.7, Wye-Delta Operation on page 140.

Heater Level FUN 08

LCD Display

FUN: Heater Level 08 Off

Range Off, 1 – 40% FLA (Default: Off)

Description

The Heater Level parameter sets the level of D.C. current that reaches the motor when the motor winding heater/anti-windmilling brake is enabled. The motor winding heater/anti-windmilling brake can be used to heat a motor in order to prevent internal condensation or it can be used to prevent a motor from rotating.

₩ NOTE: The motor can still slowly creep when the anti-windmilling brake is being used. If the motor has to be held without rotating, a mechanical means of holding the motor must be used.

The motor winding heater/anti-windmilling brake operation may be controlled by a digital input and by a heater disable bit in the starter control Modbus register. There are two methods of using the digital inputs, either the input is an enable or disable.

Enabled: When the DI 1, 2, 3, 4, 5, 6, 7, 8 inputs are programmed as Heat Enable Inputs, the input may be used to control when heating/anti-windmilling is applied. The Heater Level parameter must be set, the starter stopped and this input must be high for heating to occur.

Disabled: When the DI 1,2, 3, 4, 5, 6, 7, 8 inputs are programmed as Heat Disable Inputs, the input may be used to control when heating/anti-windmilling is applied. The Heater / Anti-Windmill Level parameter must be set and this input must be low for heating to occur.

If no digital inputs are programmed as heater enabled or disabled and HEATER LEVEL is programmed greater than 0, the heater is applied at all times when the motor is stopped.

The level of D.C. current applied to the motor during this operation needs to be monitored to ensure that the motor is not overheated. The current level should be set as low as possible and then slowly increased over a long period of time. While this is being done, the temperature of the motor should be monitored to ensure it is not overheating.

The motor should be labeled as being live even when not rotating.

The heater feature should not be used to dry out a wet motor.

ૠ NOTE: When this function is "On", all of the other parameters cannot be programmed until this parameter is turned "Off".

Energy Saver FUN 09

LCD Display

FUN: Energy Saver 09 Off

Range

 $On-Off \ (\textbf{Default: Off)} \quad *\textbf{THIS FUNCTION IS NOT AVAILABLE FOR MEDIUM VOLTAGE*}$

Description

The Energy Saver parameter lowers the voltage applied to a lightly loaded motor. It continues to lower the voltage until it finds the point where the current reaches its lowest stable level and then regulates the voltage around this point. If the load on the motor increases, the starter immediately returns the output of the starter to full voltage.

 $\mbox{\em KNOTE:}$ This function does not operate if a bypass contactor is used.

₩ NOTE: In general, Energy Saver can save approximately 1000 watts per 100 HP. Consult Benshaw for further detail.

P.O.R.T. Fault Time FUN 10

LCD Display

FUN: PORT Flt Time 10 Off

Range

Off, 0.1 - 90.0 seconds (**Default: Off**)

Description

The purpose of PORT is to not fault when all line power has been lost and to wait for a predetermined amount of time for power to return. There is the capability to hold the bypass contactor (if present) in for a given amount of time. Then when power returns, PORT shall perform a controlled restart of the motor to prevent current and/or torque spikes from occurring. The starter will enter PORT when the line voltage drops below the undervoltage trip level if enabled, or 30% below rated voltage when undervoltage protection is not enabled.

\# NOTE: For PORT to operate it is assumed that an UPS (Uninterruptible Power Supply) will supply the MX³ control power. Also the MX³ run command needs to be held active during the power outage otherwise the MX³ will perform a normal stop.

P.O.R.T. Bypass Hold Time FUN 11

LCD Display

FUN:PORT Byp Tim 11 Off

Range

Off, 0.1 - 5.0 seconds (**Default: Off**)

Description

When a power outage event is detected and the PORT bypass hold timer is enabled, the starter will hold the Bypass contactor in for a user selectable amount of time. When the time expires the starter shall open the bypass.

P.O.R.T. Recovery Method

FUN 12

LCD Display

FUN: PORT Recover 12 Fast Recover

Range LCD Description

> Fast Recover Current acceleration ramp from 100% FLA -> 800% FLA with a

> > ramp time of 1 second. (Default)

Current acceleration ramp using the Ramp#1 user parameter settings. Current Ramp Current Ramp 2 Current acceleration ramp using the Ramp#2 user parameter settings. Ramp Select Current acceleration ramp using the appropriate current ramp

selected by the RAMP Select digital input.

Tach Ramp Speed controlled acceleration ramp. Ramp starts at motor speed

measured at start of recovery and accelerates motor at same slope (acceleration rate) as a normal tachometer start from zero speed

would do.

Description The PORT Recovery parameter sets how the starter will re-accelerate the motor when power returns.

Tachometer Full Speed Voltage

FUN 13

LCD Display

FUN: Tach FS Lvl 13 5.00 Vlt

Range 1.00 - 10.00 V in 0.01 volt increments (**Default: 5.00V**)

Description The Tachometer Full Speed Voltage parameter sets the tachometer input voltage at full speed. This value

should be set at full (unloaded) motor speed.

Ex. A tachometer rated at 0.0033 volts-per-rpm is mounted on a 4-pole 1800 rpm motor. Therefore, the FS

Volts should be set to: 0.0033 * 1800 = 5.94 volts.

Tachometer Loss Time

FUN 14

LCD Display

FUN: Tach Los Tim 14 1.5 sec

Range 0.1 - 90.0 seconds (**Default: 1.5**)

Description The Tachometer Loss Time is the allowable time the starter will operate when a tachometer signal is lost. If

the signal is lost, the starter will perform the action set by the Tach Loss Action parameter.

NOTE: Nuisance tachometer loss faults at start can be prevented by setting the initial current parameter to a value that allows the motor to begin rotating soon after a start is commanded.

Tachometer Loss Action

FUN 15

LCD Display

FUN: Tach Los Act Fault 15

Range LCD

The starter will shutdown and indicate a tachometer loss fault. Fault

Current Acceleration If the tachometer signal is lost the starter will fault. However the start mode

parameter will be set to Current control acceleration so that when the fault is

reset the starter will start in current control mode.

6 - PARAMETER DESCRIPTION

TruTorque Accel If the tachometer signal is lost the starter will fault. However the start mode

parameter will be set to TruTorque control acceleration so that when the fault is

reset the starter will start in Current control mode.

KW (Power) If the tachometer signal is lost the starter will fault. However the start mode

parameter will be set to KW (Power) so that when the fault is reset the starter

will start in Current control mode.

Description If the tachometer detects the feedback signal is not valid one of the above actions will be taken depending on

the value of the Tach Loss Action user parameter.

Communication Address

FUN 16

LCD Display

FUN: Com Drop # 16 1

Range 1-247 (Default: 1)

Description The Communication Address parameter sets the starter's address for Modbus communications.

See Also Local Source parameter (QST 04) on page 59.

Remote Source parameter (QST 05) on page 60.

Communication Baud Rate parameter (FUN 17) on page 107. Communication Timeout parameter (FUN 18) on page 107. Communication Byte Framing parameter (FUN 19) on page 108.

Communication Baud Rate

FUN 17

LCD Display

FUN: Com Baudrate 17 19200

Range 1200, 2400, 4800, 9600, 19200 bps (Default: 19200)

Description The Communication Baud Rate parameter sets the baud rate for Modbus communications.

See Also Local Source parameter (QST 04) on page 59.

Remote Source parameter (QST 05) on page 60.

Communication Address parameter (FUN 16) on page 107. Communication Timeout parameter (FUN 18) on page 107. Communication Byte Framing parameter (FUN 19) on page 108.

Communication Timeout

FUN 18

LCD Display

FUN: Com Timeout 18 Off

Range Off, 1 – 120 seconds (Default: Off)

Description The Communication Timeout parameter sets the time that the starter continues to run without receiving a valid

Modbus request. If a valid Modbus request is not received for the time that is set, the starter declares an F82

(Modbus Time Out). The starter performs a controlled stop.

See Also Local Source parameter (QST 04) on page 59.

Remote Source parameter (QST 05) on page 60. Stop Mode parameter (CFN 15) on page 70.

Controlled Fault Stop Enable parameter (PFN 25) on page 85. Communication Address parameter (FUN 16) on page 107. Communication Baud Rate parameter (FUN 17) on page 107.

Communication Byte Framing

FUN 19

LCD Display

FUN: Com Parity 19 Even, 1 Stop

Range Even, 1 Stop (Default)

Odd, 1 Stop None, 1 Stop None, 2 Stop

Description The Communication Byte Framing parameter sets both the parity and number of stop bits.

See Also Communication Address parameter (FUN 16) on page 107.

Communication Baud Rate parameter (FUN 17) on page 107.

Communication Timeout parameter (FUN 18) on page 107.

Software Version 1 FUN 20

LCD Display

FUN: Software 1 20 810023-02-01

Description This parameter shows the software version 1.

The software version is also displayed on power up.

Software Version 2 FUN 21

LCD Display

FUN: Software 2 21 810024-01-01

Description This parameter shows the software version 2.

The software version is also displayed on power up.

Miscellaneous Commands

FUN 22

LCD Display

FUN: Misc Command 22 None

Range LCD Description

None No commands (**Default**)
Reset RT Reset Run Time Meter
Reset kWh Reset kWh/MWh Meters
Reflash Mode Activate Reflash Mode

Store Parms The current parameter values are stored in non-volatile memory

Load Parms All parameter are retrieved from non-volatile memory

Factory Rst
All parameters are restored to the factory defaults
Std BIST
Built In Self Test with no line voltage applied to the starter.
Powered BIST
Built In Self Test with line voltage applied to the starter.

Powered bis1 Built in sent test with line voltage applied to the s

₩ NOTE: Powered BIST not available on medium voltage starters.

Description

The Miscellaneous Commands parameter is used to issue various commands to the MX³ starter.

The Reset Run Time command resets the user run time meters back to zero (0).

The Reset kWh command resets the accumulated kilowatt-hour and megawatt-hour meters back to zero (0).

The Reflash Mode command puts the MX^3 into a reflash program memory mode. The reflash mode can only be entered if the MX^3 starter is idle. When the reflash mode is entered, the MX^3 waits to be programmed. The onboard LED display shows "FLSH". The remote display is disabled after entering reflash mode. The MX^3 does not operate normally until reflash mode is exited. Reflash mode may be exited by cycling control power.

The Store Parameters command allows the user to copy the parameters into non-volatile memory as a backup. If changes are being made, store the old set of parameters before any changes are made. If the new settings do not work, the old parameter values can be loaded back into memory.

The Load Parameters command loads the stored parameters into active memory.

The Factory Reset command restores all parameters to the factory defaults. The default values can be found in chapter 5.

The standard BIST command will put the starter into the unpowered BIST test. See section 8.9 on page 171.

% NOTE: The powered BIST test is only offered in the Low Voltage systems.

Time and Date Format

FUN 23

LCD Display

FUN: T/D Format 23 mm/dd/yy 12h

Range LCD Description

mm/dd/yy 12h	month/day/year	12 hour
mm/dd/yy 24h	month/day/year	24 hour
yy/mm/dd 12h	year/month/day	12 hour
yy/mm/dd 24h	year/month/day	24 hour
dd/mm/yy 12h	day/month/year	12 hour
dd/mm/yy 24h	day/month/year	24 hour

Description

Sets the date display format and 12 hour or 24 hour time display.

₩ NOTE: The system clock does not recognize daylight savings time.

Time FUN 24

LCD Display

FUN: Time 24 present time

Description

Sets the present time.

See Also

Time and Date parameter (FUN 23) on page 109.

Date FUN 25

LCD Display

FUN: Date 25 present date

Description

Sets the present date.

See Also

Time and Date parameter (FUN 23) on page 109.

Passcode FUN 26

LCD Display

FUN: Passcode 26 Off

Description

The MX³ provides a means of locking parameter values so that they may not be changed. Once locked, the parameters values may be viewed on the display, but any attempt to change their values by pressing the [UP] or [DOWN] keys is ignored.

Viewing the Passcode parameter indicates whether or not the parameters are locked. If they are locked, the Passcode parameter displays "On". If they are not locked, the Passcode parameter displays "Off".

To lock the parameters, press the [ENTER] key while viewing the Passcode parameter. This allows entry of a 4-digit number. Press the [UP] or [DOWN] keys and [ENTER] for each of the four digits. After entering the fourth digit, the number is stored as the passcode and the parameters are locked.

Once parameters are locked, the same 4-digit number must be re-entered into the Passcode parameter in order to unlock them. Any other 4-digit number entered will be ignored.

NOTE: To re-establish password protection after it has been cleared, the password must be entered again.

Fault Log FL1 - 9

LCD Display

FL1: LastFault# Fault Name

Range FL1 – FL9

Description

When a fault occurs, the fault number is logged in non-volatile memory. The most recent fault is in FL1 and the oldest fault is in FL9.

Pressing [ENTER] toggles through the Starter data recorded at the time of the fault. See section 4.4.5 for more information.

See Also Appendix C - Fault Codes on page 183.

Event Recorder E01 - E99

Range E01 – E99

Description

An event is anything that changes the present state of the starter. Some examples of events would be an operation fault, a Start command, or a Stop command. The event recorder stores the last 99 events. When an event occurs, the event number is logged in non-volatile memory. The most recent event is in E01 and the oldest event is in E99.

See Also

Appendix A – Event Codes on page 180. Appendix C – Fault Codes on page 183.

LCD Display

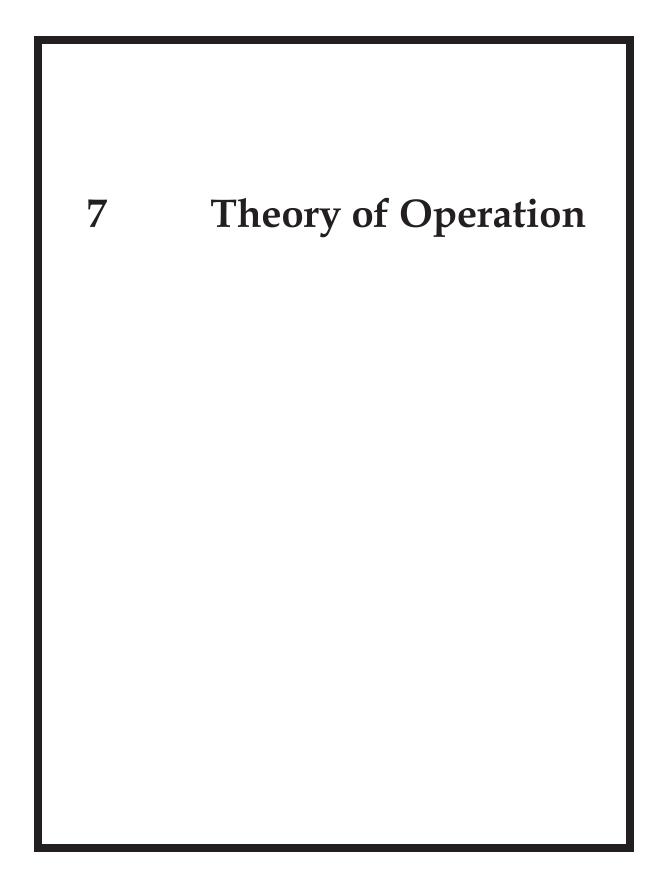
The first screen displayed in the event recorder gives the starter state on the second line of the screen. See below:

E01: Event #?? Stop Complete Pressing [ENTER] will now display the starter state at the time of the event on the bottom line of the screen. See below;

E01: Event #?? Fault

Pressing [ENTER] for a 2nd time will display the time of the event on the bottom line of the screen. See below;

E01: Event #?? hh:mm:ss


Pressing [ENTER] for a 3rd time will display the date of the event on the bottom line of the screen. See below;

E01: Event #?? mm/dd/yy

Pressing [ENTER] again returns to the first display screen.

See Also Appendix A - Event Codes on page 180.

NOTES:

Motor Overload

7.1 Solid State Motor Overload Protection

7.1.1 Overview

The MX³ contains an advanced I²t electronic motor overload (OL) protection function. For optimal motor protection, the MX³ has forty standard NEMA style overload curves (in steps of one) available for use. Separate overload classes can be programmed for acceleration and for normal running operation and individually or completely disabled if necessary. The MX³ motor overload function also implements a NEMA based current imbalance overload compensation, adjustable hot and cold motor compensation, and adjustable exponential motor cooling.

CAUTION: If the MVRMX³ motor overload protection is disabled during any mode of operation, external motor overload protection must be provided to prevent motor damage and/or the risk of fire in the case of a motor overload.

7.1.2 Setting Up The MX³ Motor Overload

Motor overload protection is easily configured through seven parameters (please refer to the descriptions of each parameter in section 6 of this manual for additional parameter information):

- 1. Motor FLA (QST 01)
- 2. Motor Service Factor (QST 02)
- 3. Motor Running Overload Class (QST 03)
- 4. Motor Starting Overload Class (PFN 29)
- 5. Independent Starting/Running Overload (PFN 28)
- 6. Motor Overload Hot/Cold Ratio (PFN 31)
- 7. Motor Overload Cooling Time (PFN 32)

The Motor FLA and Service Factor parameter settings define the motor overload "pickup" point. For example, if the motor service factor is set to 1.00, the motor overload begins accumulating or incrementing when the measured motor current is >100% FLA (100% * 1.00). The overload will NOT trip if the motor current is <100%. If the motor service factor is set to 1.15, the overload starts accumulating content when the motor current >115% FLA (100% * 1.15). The overload will NOT trip if the measured motor current is <115% of rated FLA.

The available overload classes are based on the trip time when operating at 600% of rated motor current. For example, a Class 10 overload trips in 10 seconds when the motor is operating at 600% rated current; a Class 20 overload trips in 20 seconds when the motor is operating at 600% rated current.

The equation for the MX³ standard overload curves after the "pick-up" point has been reached is:

$$\label{eq:Time to Trip (seconds)} \begin{aligned} & = \frac{35 \, \text{seconds} \, * \, \text{Class}}{\left(\frac{\text{Measured Current} \, * \, \frac{1}{\text{Current Imbal Derate Factor}}}{\text{Motor FLA}}\right)^2 - 1} \end{aligned}$$

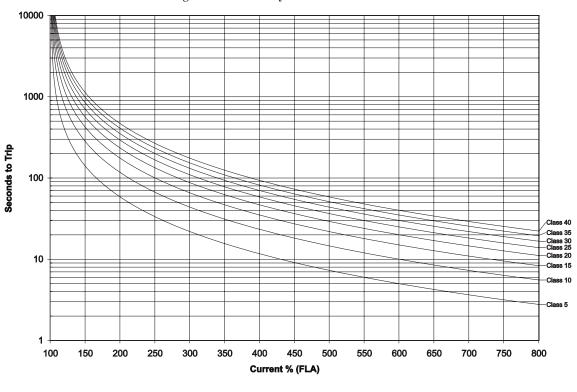


Figure 30: Commonly Used Overload Curves

Visit the web at www.benshaw.com for an automated overload calculator.

7.1.3 Motor Overload Operation

Overload Heating

When the motor is operating in the overloaded condition (motor current greater than FLAxSF), the motor overload content accumulates based on the starter's operating mode at a rate established by the overload protection class chosen. The accumulated overload content can be viewed on the display or over the communications network.

Overload Alarm

An overload alarm condition is declared when the accumulated motor overload content reaches the Motor OL Alarm Level (PFN 33). An output relay can be programmed to change state when a motor overload alarm condition is present to warn of an impending motor overload fault.

Overload Trip

The MX³ starter trips when the motor overload content reaches 100%, protecting the motor from damage. The starter first performs the defined deceleration or DC braking profile before stopping the motor if the controlled fault stop feature of the MX³ is enabled. The motor overload trip time accuracy is \pm 0.2 seconds or \pm 3% of total trip time.

Overload Start Lockout

After tripping on an overload, restarting is prevented and the starter is "locked out" until the accumulated motor overload content has cooled below the Motor OL Lockout Level (PFN 34).

7.1.4 Current Imbalance / Negative Sequence Current Compensation

The MX³ motor overload calculations automatically compensate for the additional motor heating which results from the presence of unbalanced phase currents. There can be significant negative sequence currents present in the motor when a current imbalance is present,. These negative sequence currents have a rotation opposite the motor rotation and are typically at two times the line frequency. Due to the negative sequence currents opposite rotation and higher frequency, these currents can cause a significant increase in rotor heating.

The overload curves provided by a motor manufacturer are based on balanced motor operation. Therefore, if a current imbalance is present, the MX^3 motor overload compensates for the additional heating effect by accumulating overload content faster and tripping sooner to protect the motor. The current imbalance compensation also adjusts the Hot / Cold motor protection as described below in section 7.1.6. The MX^3 derating factor is based on NEMA MG-1 14.35 specifications and is shown in Figure 31.

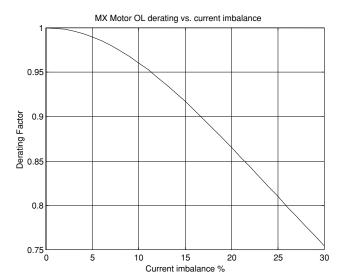


Figure 31: Overload Derating for Current Imbalance

7.1.5 Harmonic Compensation

The MX³ motor overload calculation automatically compensates for the additional motor heating that can result from the presence of harmonics. Harmonics can be generated by other loads connected to the supply such as DC drives, AC variable frequency drives, arc lighting, uninterruptible power supplies, and other similar loads.

7.1.6 Hot / Cold Motor Overload Compensation

If a motor has been in operation for some time, it will have heated up to some point. Therefore, there is typically less overload content available in the case where a motor is restarted immediately after it has been running when compared to the situation where a motor has been allowed to cool down before restarting. The MX³ provides adjustable hot motor overload compensation to fully protect the motor in these cases.

If the hot and cold maximum locked rotor times are provided, the MX3 Hot/Cold Ratio parameter value can be calculated as follows:

OL H/C Ratio =
$$\left(1 - \frac{\text{Max Hot Locked Rotor Time}}{\text{Max Cold Locked Rotor Time}}\right) \times 100\%$$

If no motor information is available, a Hot/Cold ratio value of 60% is usually a good starting point.

The MX³ adjusts the actual motor overload content based on the programmed Hot/Cold Ratio set point and the present running current of the motor so that the accumulated motor overload content accurately tracks the thermal condition of the motor. If the motor current is constant, the overload content eventually reaches a steady state value. This value is derived as follows:

$$OL_{ss} = OL \; H/C \; Ratio \times \frac{Current}{FLA} \times \frac{1}{Current \; Imbalance \; Derate \; Factor}$$

The running OL content is also adjusted based on the derating factor due to the presence of any current imbalances and or harmonics.

If the existing motor overload content is less than the calculated running OL content, the motor overload exponentially increases the overload content until the appropriate running overload content level is achieved. If the existing motor overload content is greater than the calculated running OL content level, the overload exponentially cools down or decreases to the appropriate running overload content level. The rate of the running motor overload heating or cooling is controlled by the Motor Overload Cooling Time (PFN 32) parameter.

The following diagram illustrates how the current and the Motor Overload Hot/Cold Ratio (PFN 31) parameter determine the steady state overload content. It assumes there is no current imbalance.

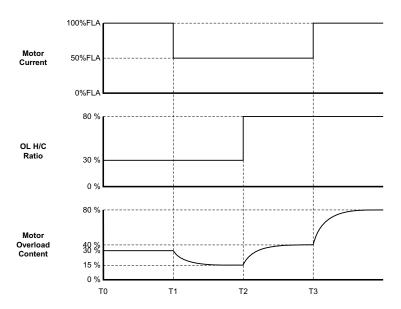


Figure 32: Motor Overload H/C Ratio Example

At time T0, the motor current is 100%FLA and the OL H/C Ratio is set at 30%. It is assumed that the motor has been running for some time and the motor overload content has reached a steady state value of 30% (30% H/C Ratio x 100% FLA = 30%).

At time T1, the motor current drops to 50%FLA. The motor overload content exponentially cools to a new steady state value of 15% (30% H/C Ratio x 50% FLA = 15%).

At time T2, the OL H/C Ratio is set to 80%. The motor overload content exponentially rises to a new steady state value of 40% (80% H/C Ratio x 50% FLA = 40%).

At time T3 the motor current rises back up to 100%FLA. The motor overload content exponentially rises to a new steady state value of 80% (80% H/C Ratio x 100% FLA= 80%).

7.1.7 RTD Overload Biasing

The RTD biasing calculates a motor thermal value based on the highest stator RTD measurement. The motor thermal overload content is set to this calculated value, if this calculated value is higher than the motor thermal overload content. The RTD biasing is calculated as follows:

Max measured stator RTD temp < RTD Bias Min Level (RTD27)

$$BiasOL\% = 0$$

RTD Bias Min Level (RTD27) < Max measured stator RTD temp < RTD Bias Mid Point Level (RTD28)

$$BiasOL\% = \frac{RTD \; \text{max} - \; MinBiasTemp}{MidBiasTemp - \; MinBiasTemp} \times Hot_Cold_Ratio$$

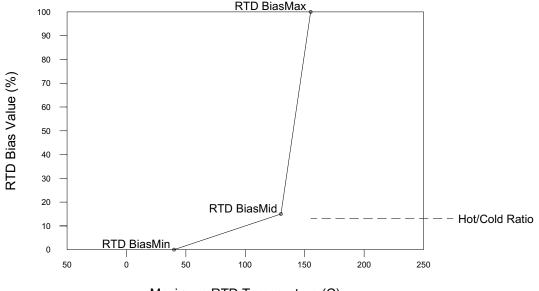
RTD Bias Mid Point Level (RTD28) < Max measured stator RTD temp < RTD Bias Max Level (RTD29)

$$BiasOL\% = \left[\frac{RTD\; \text{max} - \; MidBiasTemp}{MaxBiasTemp - \; MidBiasTemp} \times (99.9\% - hot_cold_ratio)\right] + \; hot_cold_ratio$$

RTD Bias Max Level (RTD29) < Max measured stator RTD temp

$$BiasOL\% = 99.9\%$$

The RTD Biasing levels are generally set by using the motor data as follows:


RTD Bias Min Level (RTD27): This parameter is typically programmed to the ambient temperature rating of the motor.

RTD Bias Mid Level (RTD28): This parameter is typically programmed to the temperature rise rating of the motor.

RTD Bias Max Level (RTD29): This parameter is typically programmed to insulation rating of the motor.

Figure 33: RTD Bias Curve

RTD Bias Curve

7.1.8 Overload Auto Lockout

This feature prevents an overload trip during the motor start due to insufficient thermal capacity. It will automatically calculate the overload content required to start the motor. It will lockout the starter if there is not enough overload content available. The release value calculated is based on OL content used for the past four (4) successful motor starts. A factor of 1.25 is applied as a safety margin.

Example:

The OL content used for the past 4 starts were 30%, 29%, 30%, 27%. $\begin{array}{ll} \text{step 1} & (30+29+30+27) \ / \ 4=29\% \\ \text{step 2} & 29\%*1.25=36\%. \\ \text{step 3} & 100\%-36\%=64\% \end{array}$ Therefore 64% is the calculated OL Lockout release level.

7.1.9 Separate Starting and Running Motor Overload Settings

If desired, separate overload classes can be programmed for use during starting and during running. The motor overload protection may also be disabled during starting or during normal running. In order to enable separate overload settings the Independent Starting/Running Overload (PFN 28) parameter needs to be set to "On" to allow independent overload operation. Once set to "On", the individual Motor Starting Overload Class (PFN 29) and Motor Running Overload Class (PFN 30) parameters can be set to either "Off" or the desired overload class settings.

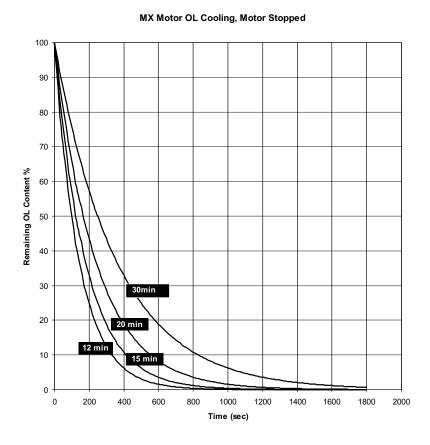
The Motor Starting Overload Class (PFN 29) parameter value is used for the motor overload calculations when the starter is starting the motor (kick mode, acceleration, and running before up-to-speed has been declared). Once the motor has reached full speed and during deceleration or braking, the Motor Running Overload Class (PFN 29) is used for the motor overload calculations. As the motor protection curves shift from the acceleration curve to the running curve, the accumulated overload content is retained to provide a seamless transition from one mode of operation to the other.

Disabling the Starting OL function or using a higher OL class for the Starting OL can be useful on extremely high inertial loads such as large centrifuges or high friction loads that require very long starting periods.

₩ NOTE: When the Independent Starting/Running Overload (PFN 28) parameter is set to "Off", the running OL is used at all times.

₩ NOTE: When one or the other overload is disabled, the Hot/Cold motor compensation is still active. Therefore the motor overload content may still slowly increase or decrease depending on the measured motor current. However if the motor overload is disabled in one of the operating modes, the motor overload content is limited in that mode to a maximum of 99%. Therefore, a motor overload trip can not occur.

CAUTION: When both overloads are disabled, the accumulated overload content is set to zero (0%) and the starter does not provide any motor overload protection. External motor overload protection must be provided to prevent motor damage and/or the risk of fire in the case of a motor overload.


7.1.10 Motor Cooling While Stopped

The Motor Overload Cooling Time (PFN 32) parameter is used to adjust the cooling rate of the motor overload. When the motor is stopped and cooling, the accumulated motor overload content is reduced in an exponential manner.

OL Content = OL Content when Stopped *
$$e^{\frac{5}{CoolingTime}t}$$

When the motor is stopped, the motor overload cools as shown in the following Figure 34.

Figure 34: Motor Cooling While Stopped Curves

120

If the motor manufacturer does not specify the motor cooling time, the following approximations for standard TEFC cast iron motors based on frame size can be used:

Frame Size	Cooling Time		
180	30 min		
280	60 min		
360	90 min		
400/440	120 min		
500	180 min		
Larger frames	Consult Manufacturer		

For motors less than 300hp, another approximation based on allowable motor starts per hour can also be used to set an initial value of the Motor Overload Cooling Time (PFN 32) parameter:

Motor Cooling Time (minutes)
$$\approx \frac{60 \text{ minutes}}{\text{Starts per hour}}$$

K NOTE: The Motor Overload Cooling Time (PFN 32) parameter is defined as the time that it takes for the motor to cool from 100% overload content to less than 1% overload content. Sometimes a motor manufacturer may provide a cooling time constant (t or tau) value. In these cases, the Motor Overload Cooling Time (PFN 32) parameter should be set to five (5) times the specified time constant value.

7.1.11 Motor Cooling While Running

When the motor is running, the Motor Overload Cooling Time (PFN 32) parameter and the Motor Overload Hot/Cold Ratio (PFN 31) parameter settings control the motor OL content. If the motor overload content is above the steady state OL running level (See section 7.1.6, Hot / Cold Motor Overload Compensation for more details) the motor OL exponentially cools to the appropriate steady state OL level. When the motor is running, the cooling time is adjusted based on the measured current level and current imbalance level at which the motor is operating.

Cooling Time Running = Cooling Time Stopped *
$$\frac{\text{Measured Running Current}}{\text{Motor FLA}}$$
 * $\frac{1}{\text{Current Imbalance Derate Factor}}$

In all cases, the running motor cooling time is shorter (motor will cool faster) than when the motor is stopped. The faster cooling results because it is assumed that when a motor is running, cooling air is being applied to the motor.

7.1.12 Emergency Motor Overload Reset

The MX^3 has an emergency motor overload reset feature that allows the user to override the overload starter lockout. This resets the motor overload content to 0%. It does not reset the overload fault.

To perform an emergency overload reset, simultaneously press the [RESET] and [DOWN] buttons on the keypad. An emergency overload reset may also be performed by applying 120 Volts to a digital input that is configured as an emergency overload reset input or by setting the emergency overload reset bit in the starter control Modbus register.

CAUTION: This feature should only be used in an emergency. Before an emergency reset is performed the cause of the motor overload should be investigated to ensure that the motor is capable of restarting without causing undesired motor or load damage. When the emergency motor overload reset is used, the accumulated motor overload content is reset back to zero (0%). Therefore, the MX³ motor protection functions may not be able to fully protect the motor from damage during a restart after performing an emergency motor overload reset.

Motor Service Factor

7.2 Motor Service Factor

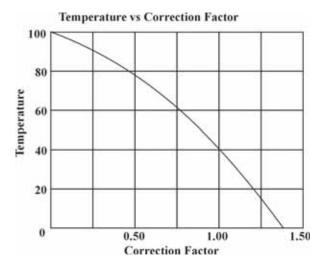
General

The Motor Service Factor (QST 02) parameter should be set to the service factor of the motor. The service factor is used to determine the "pick up" point for the overload calculations. If the service factor of the motor is not known then the service factor should be set to 1.00.

38 NOTE: The NEC (National Electrical Code) does not allow the service factor to be set above 1.40. Check with other local electrical codes for their requirements.

The National Electrical Code, article 430 Part C, allows for different overload multiplier factors depending on the motor and operating conditions. NEC section 430-32 outlines the allowable service factor for different motors as follows:

Motor Overload Multiplier


Service factor 1.15 or more	1.25
Motor temp. rise 40°C or less	1.25
All others	1.15

NEC section 430-34 permits further modifications if the service factor is not sufficient to start the motor:

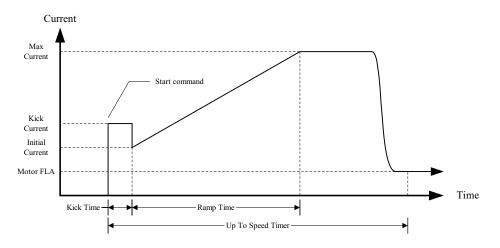
Motor Overload Multiplier

Service factor 1.15 or more	1.40
Motor temp. rise 40°C or less	1.40
All others	1.30

Although the NEC does not address the effect of the ambient temperature of the motor location, guidance can be derived by examining NEC limits. If the motor is operating in an ambient temperature that is less than 40°C, then the overload multiplier can be increased while still protecting the motor from exceeding its maximum designed temperature. The following curve gives the ambient temperature versus the correction factor.

Example: If a motor operates at 0° C, then a 1.36 correction factor could be applied to the overload multiplier. This could give a theoretical overload multiplier of 1.36 x 1.25 or 1.70. The highest legal NEC approved value of overload multiplier is 1.40, so this could be used.

Acceleration Control


7.3 Acceleration Control

7.3.1 Current Ramp Settings, Ramps and Times

General

The current ramp sets how the motor accelerates. The current ramp is a linear increase in current from the initial setting to the maximum setting. The ramp time sets the speed of this linear current increase. The following figure shows the relationships of these different ramp settings.

Figure 35: Current Ramp

Initial Current

The initial current should be set to the level that allows the motor to begin rotating within a couple of seconds of receiving a start command.

To adjust the initial current setting, give the starter a run command. Observe the motor to see how long it takes before it begins rotating and then stop the unit. For every second that the motor doesn't rotate, increase the initial current by 20%. Typical loads require an initial current in the range of 50% to 175%.

Maximum Current

For most applications, the maximum current can be left at 600%. This ensures that enough current is applied to the motor to accelerate it to full speed.

The maximum current can also be set to a lower current limit. This is usually done to limit the voltage drop on the power system or to limit the torque the motor produces to help prevent damage to the driven load.

% NOTE: The motor may achieve full speed at any time during the current ramp. This means that the maximum current setting may not be reached. Therefore, the maximum current setting is the most current that could ever reach the motor, and not necessarily the maximum current that reaches the motor.

% NOTE: When setting a current limit, the motor must be monitored to ensure that the current is high enough to allow the motor to reach full speed under worst case load conditions.

7 - THEORY OF OPERATION

Ramp Time

The ramp time is the time it takes for the current to go from the initial current to the maximum current. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

If the ramp time expires before the motor reaches full speed, the starter maintains the maximum current level until either the motor reaches full speed, the Up to Speed time expires, or the motor thermal overload trips.

NOTE: Setting the ramp time to a specific value does not necessarily mean that the motor will take this time to accelerate to full speed. The motor and load may achieve full speed before the ramp time expires if the application does not require the set ramp time and maximum current to reach full speed. Alternatively, the motor and load may take longer than the set ramp time to achieve full speed.

7.3.2 **Programming A Kick Current**

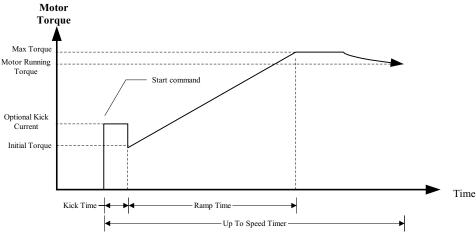
General

The kick current sets a constant current level that is applied to the motor before the ramp begins. The kick current is only useful on motor loads that are hard to get rotating but then are much easier to move once they are rotating. An example of a load that is hard to get rotating is a ball mill. The ball mill requires a high torque to get it to rotate the first quarter turn (90°). Once the ball mill is past 90° of rotation, the material inside begins tumbling and it is easier to turn.

Kick Level

The kick current parameter is usually set to a low value and then the kick time is adjusted to get the motor rotating. If the kick time is set to more than 2.0 seconds without the motor rotating, increase the kick current by 100% and re-adjust the kick time.

Kick Time


The kick time adjustment should begin at 0.5 seconds and be adjusted by 0.1 or 0.2 second intervals until the motor begins rotating. If the kick time is adjusted above 2.0 seconds without the motor rotating, start over with a higher kick current setting.

7.3.3 TruTorque Acceleration Control Settings and Times

General

TruTorque acceleration control is a closed loop torque based control. The primary purpose of TruTorque acceleration control is to smoothly start motors and to reduce the torque surge that can occur as an AC induction motor comes up to speed. This torque surge can be a problem in applications such as pumps and belt driven systems. In pumping applications, this torque surge can result in a pressure peak as the motor comes up to speed. In most situations this small pressure peak is not a problem. However in selected cases, even a small pressure rise can be highly undesirable. In belt driven applications, TruTorque can prevent the

slipping of belts as the motor reaches full speed. Figure 36: TruTorque Ramp

TruTorque acceleration control can be very useful for a variety of applications. However it is best used to start centrifugal pumps, fans, and other variable torque applications. TruTorque generally should not be used in applications where the starting load varies greatly during the start such as with a reciprocating compressor, where the starting load is very low, or where the starting load varies greatly from one start to another. TruTorque control is not recommended for the starting of AC synchronous motors.

Initial Torque

This parameter (CFN 08) sets the initial torque level that the motor produces at the beginning of the starting ramp profile. A typical value is 10% to 20%. If the motor starts too quickly or the initial motor torque is too high, reduce this parameter. If the motor does not start rotating within a few seconds after a start is commanded, increase this parameter. If the value is set too low a "No Current at Run" fault may occur.

Maximum Torque

This parameter (CFN 09)sets the final or maximum torque level that the motor produces at the end of the acceleration ramp time. For a loaded motor, the maximum torque value initially should be set to 100% or greater. If the maximum torque value is set too low, the motor may not produce enough torque to reach full speed and may stall. On lightly loaded motors, this parameter may be reduced below 100% to produce smoother starts.

If the motor can be started by using the default TruTorque acceleration parameter values or another ramp profile, the Maximum Torque level can be determined more precisely so that the motor comes up to speed in approximately the preset ramp time. In this case, while the motor is running fully loaded, display the TruTorque percent (TT%) meter on the display. Record the value displayed. The Maximum Torque level should then be set to the recorded full load value of TT% plus an additional 10%. Restart the motor with this value to verify correct operation.

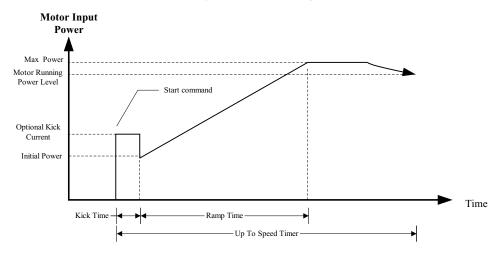
% NOTE: When setting the Maximum Torque value, the motor must be monitored to ensure that the torque level is high enough to allow the motor to reach full speed under worst-case load conditions.

% NOTE: Depending on loading, the motor many achieve full speed at any time during the TruTorque ramp. This means that the Maximum Torque level many never be achieved. Therefore, the maximum torque level is the maximum TruTorque level that is permitted. However the motor torque may not necessarily reach this value during all starts.

Ramp Time

When in TruTorque acceleration mode, the ramp time setting is the time it takes for the torque to go from the initial torque setting to the maximum torque setting. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

If the ramp time expires before the motor reaches full speed, the starter maintains the Maximum Torque level until either the motor reaches full speed, UTS timer expires, or the motor thermal overload protection trips.


\mathbb{H} NOTE: Setting the ramp time to a specific value does not necessarily mean that the motor takes that exact amount of time to accelerate to full speed. The motor and load may achieve full speed before the ramp time expires if the load does not require the set ramp time or set torque level to reach full speed. Alternately, the motor and load may take longer than the set ramp time to achieve full speed depending on the parameter settings and load level.

7.3.4 Power Control Acceleration Settings and Times

General

Power control is a closed loop power based acceleration control. The primary purpose of Power controlled acceleration is to control and limit the power (kW) drawn from the power system and to reduce the power surge that may occur as an AC induction motor comes up to speed. This power surge can be a problem in applications that are operated on generators or other limited or "soft" power systems. Power control also reduces the torque surge that can also occur as an AC induction motor comes up to speed.

Figure 37: Power Ramp

Power control acceleration can be very useful for a variety of applications. Power control generally should not be used in applications where the starting load varies greatly during the start such as with a reciprocating compressor. Power control is not recommended for starting of AC synchronous motors.

Initial Power

This parameter sets the initial power level that the motor draws at the beginning of the starting ramp profile. A typical value is usually 10% to 30%. If the motor starts too quickly or the initial power level is too high, reduce this parameter. If the motor does not start rotating within a few seconds after a start is commanded, increase this parameter. If this value is set too low a "No Current at Run" fault may occur.

Maximum Power

This parameter sets the final or maximum power level that the motor produces at the end of the acceleration ramp. For a loaded motor, the maximum power level initially should be set to 100% or greater. If the maximum power level value is set too low, the motor may not produce enough torque to reach full speed and may stall. On lightly loaded motors, this parameter may be reduced below 100% to produce smoother starts.

If the motor can be started by using the default Power acceleration parameter values or the Current control ramp, the Maximum Power level can be determined more precisely so that the motor comes up to speed in approximately the preset ramp time. In this case, while the motor is running fully loaded, display the Power percent (KW%) meter on the display. Record the value displayed. The Maximum Power level should then be set to the recorded full load value of KW% plus an additional 5% to 10%. Restart the motor with this value to verify correct operation.

% NOTE: When setting the Maximum Power level, the motor must be monitored to ensure that the starting power is high enough to allow the motor to reach full speed under worst case load conditions.

% NOTE: Depending on loading, the motor may achieve full speed at any time during the Power ramp. This means that the Maximum Power level may not be reached. Therefore, the maximum power level is the maximum power level that is permitted. However, the motor power may not necessarily reach this value during all starts.

Ramp Time

When in Power acceleration mode, the ramp time setting is the time it takes for the power to go from the initial power setting to the maximum power setting. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

If the ramp time expires before the motor reaches full speed, the starter maintains the Maximum Power level until either the motor reaches full speed, the UTS timer expires, or the motor thermal overload protection trips.

\mathbb{H} NOTE: Setting the ramp time to a specific value does not necessarily mean that the motor takes that exact amount of time to accelerate to full speed. The motor and load may achieve full speed before the ramp time expires if the load does not require the set ramp time or set power level to reach full speed. Alternately, the motor and load may take longer than the set ramp time to achieve full speed depending on the parameter settings and load level.

7.3.5 Open Loop Voltage Ramps and Times

General

The open loop voltage ramp provides soft starting of a motor by increasing the voltage applied to motor from the Initial Voltage setting to full (100%) line voltage. The ramp time sets the speed at which the voltage is increased. Because this is an open loop control profile, the motor current during starting tends to be reduced; however, the current is not limited to any particular level. This starting mode (old), is not commonly used except in special circumstances. In most applications, the use of one of the other closed loop starting profiles is recommended.

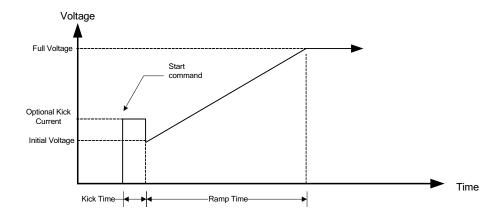


Figure 38: Voltage Ramp

Initial Voltage

This parameter sets the initial voltage level that is applied to the motor. To adjust the starting voltage level, give the starter a run command and observe the motor operation. If the motor starts too quickly reduce the initial voltage level. If the motor does not start rotating immediately or starts too slowly then increase the initial voltage level until the motor just starts to rotate when a start command is given. If the initial voltage level is set too low, a Fault 39 - No Current at Run may occur. In this case increase the initial voltage level to permit more current to initially flow to the motor.

Ramp Time

The ramp time setting is the time that it takes for the applied voltage to go from the initial voltage level to the full voltage (100%) level. To make the motor accelerate faster, decrease the ramp time. To make the motor accelerate slower, increase the ramp time.

UTS Timer

When the start mode is set to open-loop voltage ramp acceleration, the UTS Timer acts as an acceleration kick. When the UTS timer expires, full voltage is applied to the motor. This feature can be used to reduce motor surging that may occur near the end of an open loop voltage ramp start. If a surge occurs near the end of the ramp, set the UTS timer to expire at this time and restart the motor. If the surge still occurs, set the UTS time to a lower time until the surging subsides. If motor surging continues to be a problem, it is recommended that one of the other standard MX^3 closed-loop starting profiles be used.

Voltage
Full Voltage

Optional Kick
Current
Initial Voltage

Kick Time

UTS Time

Time

Figure 39: Effect of UTS Timer on Voltage Ramp

7.3.6 Dual Acceleration Ramp Control

General

Two independent current ramps and kick currents may be programmed. The use of two different starting profiles can be very useful with applications that have varying starting loads such as conveyors that can start either loaded or unloaded.

The Current Ramp 1 profile is programmed using the parameters Initial Current 1, Maximum Current 1, and Ramp Time 1. The Current Ramp 2 is programmed using the parameters Initial Current 2, Maximum Current 2, and Ramp Time 2. Kick Current 1 profile is programmed using the parameters Kick Level 1 and Kick Time 1. Kick Current 2 profile is programmed using the parameters Kick Level 2 and Kick Time 2.

7.3.7 Tachometer Ramp Selection

Description

The Tachometer control ramp profile provides a method to linearly ramp the speed of the system. When this control mode is selected, the starter uses a tachometer to provide speed feedback to the starter. This mode is commonly used on conveyor belt applications where a smooth controlled start is necessary under various load conditions to prevent belt breakage, lifting, or excessive stretching. The Tachometer controller consists of an inner PID current loop and an outer PI speed control loop.

ૠ NOTE: The maximum current limit will override the speed control loop if necessary. If the Maximum Current level is not set high enough or the load is too great, the MX³ starter will limit the motor current to this maximum level. When current limiting occurs, the speed profile will no longer be linear and the motor(s) will take longer to accelerate to full speed. Therefore, if current limiting is undesirable, this parameter must be set higher than the peak starting current during a linear speed ramp start.

Tachometer Requirements

In addition to the basic motor and starter setup variables, the following needs to done to use the tachometer feedback control ramp:

- Connect a tachometer with appropriate DC output voltage and correct polarity to the MX³ power card input (TB5-2 (+ positive) & TB5-3 (- negative)).
- The tachometer feedback Start Mode (CFN 01) is selectable as "Tach Ramp" from the Starter Modes menu.
- 3. Program the appropriate variables in the Tachometer Setup menu.
 - FUN 13- Tachometer Full Speed Voltage on page 106.
 - FUN 14- Tachometer Loss Time on page 106.
 - FUN 15- Tachometer Loss Action on page 106.
- 4. Set the Initial Current (QST 06/CFN 03) level to the desired starting current on page 64.
- 5. Set the Maximum Current (QST 07/CFN 04) level to the desired maximum current limit on page 65.

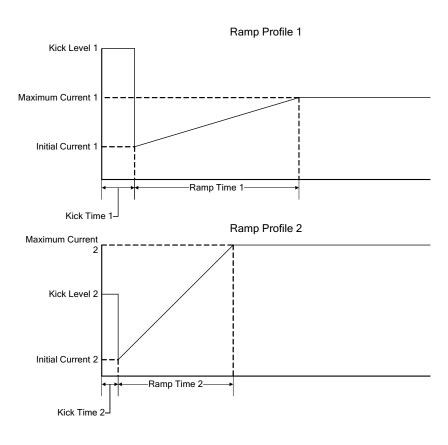
Acceleration Ramp Selection

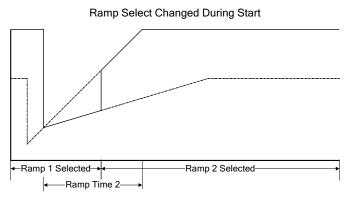
Current Ramp 2 and Kick Current 2 starting profiles are selected by programming a digital input to the Ramp Select function and then energizing that input by applying 120 Volts to it. When a digital input is programmed to Ramp Select, but de-energized, Current Ramp 1 and Kick Current 1 are selected. When no digital inputs are programmed to the Ramp Select function the Ramp 1 profile is used.

The Ramp Select input only affects the starting profile when using a current ramp profile and during a kick. The Ramp Select input does not affect the TruTorque ramp, Power ramp, or the Voltage ramp profile (unless kicking is enabled at the beginning of those ramps).

The following table summarizes which parameters affect the starting profile when a digital input is programmed to the Ramp Select function and that input is either energized or de-energized.

Ramp Modes


	Ramp Select De-energized	Ramp Select Energized			
	Initial Current 1	Initial Current 2			
Current Ramp	Maximum Current 1	Maximum Current 2			
	Ramp Time 1	Ramp Time 2			
	Kick Level 1	Kick Level 2			
	Kick Time 1	Kick Time 2			
	Initial Voltage/Torque/Power	Initial Voltage/Torque/Power			
	Maximum Torque/Power				
TruTorque Ramp	Ramp Time 1	Ramp Time 1			
	Kick Level 1	Kick Level 2			
	Kick Time 1	Kick Time 2			
	Initial Voltage/Torque/Power	Initial Voltage/Torque/Power			
	Maximum Torque/Power	Maximum Torque/Power			
Power (KW) Ramp	Ramp Time 1	Ramp Time 1			
	Kick Level 1	Kick Level 2			
	Kick Time 1	Kick Time 2			
	Initial Voltage/Torque/Power	Initial Voltage/Torque/Power			
Voltage Down	Ramp Time 1	Ramp Time 1			
Voltage Ramp	Kick Level 1	Kick Level 2			
	Kick Time 1	Kick Time 2			
	Initial Current 1	Initial Current 2			
Tachometer Ramp	Maximum Current 1	Maximum Current 2			
	Ramp Time 1	Ramp Time 2			
	Kick Level 1	Kick Level 2			
	Kick Time 1	Kick Time 2			


Changing Ramp Profiles

The selected ramp profile may be changed during starting by changing the Ramp Select input. When the Ramp Select input changes during ramping, control switches to the other profile as if it were already in progress. It does not switch to the beginning of the other profile. Refer to the following example below:

₩ NOTE: Once the motor has achieved an up-to-speed status (UTS), changes to the Ramp Select input have no effect on the motor operation.

Figure 40: Changing Ramps During Acceleration Example

Deceleration Control

7.4 Deceleration Control

7.4.1 Voltage Control Deceleration

Overview

The deceleration control on the MX^3 uses an open loop voltage ramp. The MX^3 ramps the voltage down to decelerate the motor. The curve shows the motor voltage versus the decel setting.

100
90
80
80
70
50
90
100
90
80
100
90
80
100
90
80
70
60
50
40
100
Programmed Decel Level (%)

Figure 41: Motor Voltage Versus Decel Level

Beginning Level

This sets the starting voltage of the deceleration ramp. Most motors require the voltage to drop to around 60% or lower before any significant deceleration is observed. Therefore, a good first setting for this parameter is 35%.

To adjust this parameter, it is necessary to observe the motor operation as soon as a stop is commanded. If the motor hunts (speed oscillations) at the beginning of the deceleration, then lower the parameter by 5%. If the motor has a big drop in speed as soon as a stop is commanded, then raise the parameter by 5%.

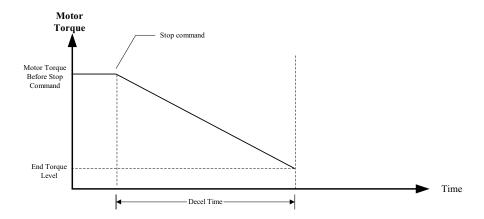
Some motors are very sensitive to the adjustment of this parameter. If a 5% adjustment changes the motor from hunting to dropping in speed, then a smaller change of 1% or 2% may be necessary.

Ending Level

This sets the final voltage for the deceleration ramp. In most cases, this parameter can be set to 10% and the decel time can be used to adjust the deceleration rate. If the motor is coming to a stop too quickly or if the starter continues to apply current to the motor after the motor has stopped, this parameter can be increased in 5% increments to fix this.

Decel Time

The decel time sets how quickly the motor decelerates. Usually a time of 30 seconds is a good starting point. To make the motor take longer to decelerate, increase this parameter or to make the motor decelerate quicker, decrease this parameter.


 \Re NOTE: Deceleration control provides a smoother stop. However, the motor will take longer to stop than if it was just allowed to coast to stop.

7.4.2 TruTorque Deceleration

Overview

TruTorque deceleration control is a closed loop deceleration control. This allows TruTorque deceleration to be more consistent in cases of changing line voltage levels and varying motor load conditions. TruTorque deceleration is best suited to pumping and compressor applications where pressure surges, such as water hammer, must be eliminated. The MX³ linearly reduces the motor's torque to smoothly decelerate the motor and load. TruTorque deceleration is very easy to use with only two parameters to set.

Figure 42: TruTorque Deceleration

Ending Level

The Decel End Level parameter sets the ending torque level for the TruTorque deceleration ramp profile.

A typical TruTorque decel end level setting is between 10% and 20%. If the motor stops rotating before the deceleration time has expired, increase this parameter value. If the motor is still rotating when the deceleration time has expired, decrease this parameter value.

Decel Time

The decel time sets the ramp time between the motor torque level when stop was commanded and the decel end torque level.

If the motor stops rotating before the decel time has expired, decrease the decel time parameter. If the motor is still rotating when the decel time expires, increase the decel time parameter.

Braking Controls

7.5 Braking Controls

Overview

When the Stop Mode parameter is set to DC Brake, the MX³ starter provides DC injection braking for fast and friction braking of a three-phase motor. The MX³ starter applies a controlled DC current to the motor in order to induce a stationary magnetic field that then exerts a braking torque on the motor's rotating rotor. The braking current level and braking time required depends on the motor characteristics, the load inertia, and the friction in the system.

The MX³ starter supports two different levels of DC injection braking:

- 1. Standard Duty Brake For less than 6 x motor inertia.
- 2. Heavy Duty Brake For NEMA specified inertia and two motor current feedback methods:
 - a) Standard Current Transformers (CTs)
 - b) Optional Hall Effect Current Sensor (LEM)

The optional Hall Effect Current sensor can be used when a more precise measurement of braking current is necessary. This can occur if the DC injection braking is applied when the source supply has a very high short circuit capability (very stiff) or in special instances when more precise braking current control is required. The appropriate brake type and feedback method is preset from the factory. Please consult Benshaw for more information if changes need to be made.

Maximum Load Inertia

The following table shows maximum load inertia, NEMA MG1 parts 12 and 20. It is recommended a thermistor or RTD be installed to protect the motor from overheating.

	Speed - RPM						
	3600	1800	1200	900	720	600	514
HP				Inertia (lb-ft2)			
75	71	338	904	1814	3111	4831	7010
100	92	441	1181	2372	4070	6320	9180
125	113	542	1452	2919	5010	7790	11310
150	133	640	1719	3456	5940	9230	-
200	172	831	2238	4508	7750	12060	-
250	210	1017	2744	5540	9530	14830	-
300	246	1197	3239	6540	11270	-	-
350	281	1373	3723	7530	-	-	-
400	315	1546	4199	8500	-	-	-
450	349	1714	4666	9460	-	-	-
500	381	1880	5130	-	-	-	-
600	443	2202	6030	-	-	-	-
700	503	2514	-	-	-	-	-
800	560	2815	-	-	-	-	-

7 - THEORY OF OPERATION

7.5.1 DC Injection Braking, Standard Duty

The MX³ Standard Duty Braking allows up to approximately 250% FLA current to be applied to the motor. The MX³ Standard Duty package consists of an extra braking contactor that shorts motor terminals 2 and 3 together while braking, as DC current is applied by the MX³ starter to provide moderate braking torque.

CAUTION: Contactor MUST NOT short phase T1 and phase T3.

NOTE: Contactor sizing requires AC1 contactor rating (Motor FLA / 1.6). The three contacts must be paralleled.

7.5.2 DC Injection Braking, Heavy Duty

The MX^3 Heavy Duty Braking allows up to 400% FLA current to be applied to the motor for maximum braking performance. The MX^3 Heavy Duty braking package includes a freewheel current path between phases 1 and 3 that consists of a fuse and a 7^{th} SCR with gating card. In combination with the applied DC current from the MX^3 starter, the freewheeling current path greatly enhances available braking torque. When Braking, the stop must be counted as another motor start when looking at the motor starts per hour limit.

₩ NOTE: Semi-Conductor Fuse and 7th SCR supplied by Benshaw.

7.5.3 Braking Output Relay

To utilize DC injection braking, one of the user output Relays needs to be programmed as a Braking relay. (Refer to the Relay Output Configuration parameters on page 91 for more information). The output of a Braking relay is needed to control the contactor and/or 7th SCR gating control card used during braking.

NOTE: Verify that the correct output relay is programmed to Braking and that the wiring of this relay is correct. Damage to the starter can result if the braking relay is not programmed and/or wired properly.

7.5.4 Stand Alone Overload Relay for emergency ATL (Across The Line) Operation

Due to the currents being drawn on Line 1 and Line 3 for braking, this stand alone overload relay will cause nuisance current imbalance trips. For a solution consult factory.

7.5.5 DC Injection Brake Wiring Example

STANDARD DUTY BRAKE HEAVY DUTY BRAKE 3Ø50/60Hz. L2 2200-6900 VAC T2 CT2 BP ┢╼┉ -⊕-c **→⊕-**c TO 120VAC LOCATED IN LOW VOLTAGE SECTION J8
LINE VOLTAGE
SENSING DIVIDER
CARD
TB1
CARD
120 VAC
INPUT POWER BRAKING CONTACTOR COIL MX³ CARD ®1 ®1 ₽ #1 R4 #1 R5 #1 R5 #1 R6 ANALOG OUTPUT THREE WIRE CONTROL MEDIUM VOLTAGE MX³ CARD ASSEMBLY BIPC-450100-01 MOUNTED IN LOW VOLTAGE DOOR

KPMX3LLCD

KEYPAD/DISPLAY

STOP

STOP

STOP

STOP

START

MENU The letter 8888 PROGRAMMABLE DIGITAL INPUTS LOCATED IN LOW VOLTAGE SECTION

Figure 43: DC Injection Brake Wiring Example

7.5.6 DC Brake Timing

The MX³ DC injection brake timing is shown below:

DC Brake **Delay Time** DC Brake Delay after Time DC Brake Brake Relay On Braking Relay Energized Brake Relay Off DC Injection On Starter SCRs On, DC Current Applied DC Injection Off time П Stop Delay to allow DC Brake **Braking Relay** Commanded contactor to Time opens after a dose before **Expired** delay to allow applying DC residual DC current current to decay

Figure 44: DC Injection Brake Timing

After the DC Brake Time has expired, the Braking Relay is held energized to allow the DC current to decay before opening the freewheel path. This delay prevents a contactor (if used) from having to open significant DC current which greatly prolongs the life of the contactor. This delay time is based on motor FLA, the larger the motor the longer the delay time. The delay after DC brake time is approximately:

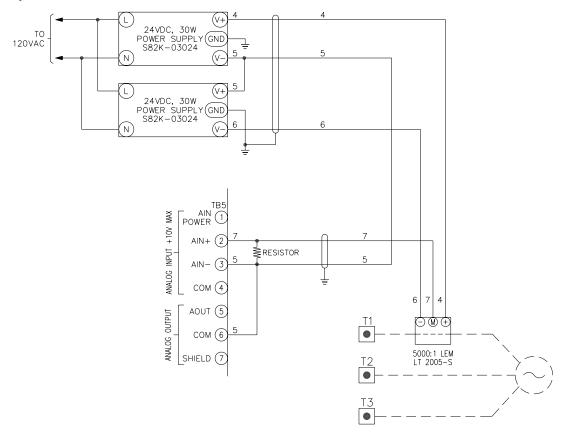
Motor FLA	Delay after DC Brake Time
10 A	0.4 seconds
100 A	0.8 seconds
500 A	2.3 seconds
1000 A	4.3 seconds

Motor Overload Calculations During DC Injection Braking

During DC braking the MX^3 Solid State Motor Overload Protection is fully active. During braking the Running Motor overload setting is used. The MX^3 adjusts the overload calculations based on whether Standard Duty or Heavy Duty braking is used. The overload calculations are also adjusted based on whether the standard Current Transformers (CTs) are used for current feedback or if the optional Hall Effect Current sensor is used for current feedback.

NOTE: Discretion must be used when DC injection braking. Motor heating during DC injection braking is similar to motor heating during starting. Although the Motor OL is active (if it has not been intentionally disabled), excessive rotor heating could still result if the load inertia is very large, braking level is high, or the brake time is set too long. Caution must be used to assure that the motor has the thermal capacity to brake the desired load in the desired period of time without excessive heating.

7.5.7 DC Injection Brake Enable and Disable Digital Inputs


Digital inputs can be programmed to either a Brake enable or a Brake Disable. In the Brake Enable case the digital input must be energized for DC braking to occur. The braking will immediately stop if the brake enable is de-energized.

In the Brake Disable case, DC braking will occur unless the Brake Disable digital input is energized. DC braking will cease if the brake disable is energized.

Once DC Braking is stopped due to a digital input state change, no further DC braking will take place and the starter will return to the idle state.

7.5.8 Use of Optional Hall Effect Current Sensor

The Hall Effect Current Sensor should be located on Phase 1 of the motor output wiring. The sensor should be located so that the sensor measures both the applied DC current from the starter as well as the freewheel current. The sensor is connected to the analog input of the MX^3 card along with a burden resistor. The analog input must be set to be a 0-10V voltage input for correct operation. The sensor scaling and burden resistance are factory selected. Please consult factory if changes to either the sensor scaling or burden resistance is required.

NOTE: Hall effect current sensor must be used when load inertia exceeds motor manufactures recommended specifications.

₩ NOTE: Hall effect current sensor must be protected with high voltage sleeving.

7.5.9 DC Injection Braking Parameters

Brake Level: The DC Brake Level parameter sets the level of DC current applied to the motor during braking. The desired

brake level is determined by the combination of the system inertia, system friction, and the desired braking time. If the motor is braking too fast the level should be reduced. If the motor is not braking fast enough the

level should be increased.

Brake Time: The DC Brake Time parameter sets the time that DC current is applied to the motor. The desired brake time is

determined by the combination of the system inertia, system friction, and the desired braking level. If the motor is still rotating faster than desired at the end of the brake time increase the brake time if possible. If the motor stops before the desired brake time has expired decrease the brake time to minimize unnecessary motor

eating.

Brake Delay: The DC Brake Delay Time is the time delay between when a stop is commanded and the DC braking current

is applied to the motor. This delay allows the residual magnetic field and motor counter EMF to decay before applying the DC braking current. If a large surge of current is detected when DC braking is first engaged increase the delay time. If the delay before the braking action begins is too long then decrease the delay time. In general, low horsepower motors can utilize shorter delays while large horsepower motor may require longer

delays.

Slow Speed Cyclo Converter

7.6 Slow Speed Cyclo Converter

The MX³ Soft Starter implements a patented Slow Speed algorithm that can be used to rotate a three-phase AC motor, with control of the stator current, at speeds less than the rated synchronous speed of the motor. The algorithm is used with a standard three-phase six-switch SCR based soft starter. The advantages of the MX³ starter algorithm over other "jogging" techniques are that: the low speed motor rotation is done without any additional hardware such as additional mechanical contactors and/or extra SCRs, the peak phase currents are reduced compared with other jogging techniques, motor heating is minimized, and higher shaft torque can be generated.

7.6.1 Operation

Slow speed forward and reverse operation is achieved by energizing a digital input that has been programmed to either Slow Speed Forward or Slow Speed Reverse (refer to the Digital Input Configuration parameters on page 90 for more information). The active control source (Local Source or Remote Source) must be set to terminal. Slow Speed Start/Stop control is not available from the LCD keypad. The starter must be in the idle state in order to enter slow speed operation.

Relay outputs can be programmed to energize during slow speed operation (refer to the Relay Output Configuration parameters on page 91 for more information). This feature can be used to disable mechanical brakes or energize clutches during slow speed operation.

Motor Overload Calculations During Slow Speed Operation

During Slow Speed Operation the MX^3 Solid State Motor Overload Protection is fully active. During slow speed operation the Running Motor overload setting is used.

% NOTE: When the motor is operating at slow speeds its cooling capacity can be greatly reduced. Therefore the running time of the motor at a given current level is dependant on the motor's thermal capacity. Although the Motor OL is active (if it has not been intentionally disabled) during slow speed operation it is recommended that the motor temperature be monitored if slow speed is used for long periods of time.

7.6.2 Slow Speed Cyclo Converter Parameters

Slow Speed: The Slow Speed parameter selects the speed of motor operation when slow speed is selected. When set to

Off, slow speed operation is disabled.

Slow Speed Current Level: The Slow Speed Current Level parameter selects the level of current applied to the motor during slow speed

operation. The parameter is set as a percentage of motor full load amps (FLA). This value should be set to

the lowest possible current level that will properly operate the motor.

Slow Speed Time Limit: The Slow Speed Time Limits parameter sets the amount of time that continuous operation of slow speed may

take place. When this parameter is set to "Off" the timer is disabled. This parameter can be used to limit the

amount of continuous slow speed operation to protect the motor and/or load.

NOTE: The Slow Speed Time Limit includes the time used for the Slow Speed Kick if kick is enabled.

₩ NOTE: The Slow Speed Time Limit resets when the motor is stopped. This timer does not prevent the

operator from stopping and re-starting the motor which can result in the slow speed operation time of the motor being exceeded.

Slow Speed Kick Level:

The Slow Speed Kick Level sets the short-term current level that is applied to the motor to accelerate the motor for slow speed operation. The Slow Speed Kick feature is disabled if it is set to off. Slow Speed Kick can be used to "break loose" difficult to start loads while keeping the operating slow speed current level lower.

This parameter should be set to a midrange value and then the Slow Speed Kick Time should be increased in 0.1 second intervals until the kick is applied long enough to start the motor rotating. If the motor does not start rotating with the set Slow Speed Kick Level increase the level and begin adjusting the kick time from 1.0 seconds again.

If the motor initially accelerates too fast then reduce the Slow Speed Kick Level and/or reduce the Slow Speed Kick Time.

Slow Speed Kick Time:

The Slow Speed Kick Time parameter sets the length of time that the Slow Speed Kick current level is applied to the motor at the beginning of slow speed operation. After the Slow Speed Kick Level is set, the Slow Speed Kick Time should be adjusted so that the motor starts rotating when a slow speed command is given.

If the motor initially accelerates too fast then reduce the Slow Speed Kick Level and/or reduce the Slow Speed Kick Time.

Wye Delta Starter

7.7 Wye Delta Starter

When the Starter Type parameter is set to Wye-Delta, the MX^3 is configured to operate an electro mechanical Wye-Delta (Star-Delta) starter. When in Wye-Delta mode, all MX^3 motor and starter protective functions except bad SCR detection and power stack overload, are available to provide full motor and starter protection.

A typical closed transition Wye-Delta starter schematic is shown in the following figure.

. ₽-⊕-q - () - ₽⊕┪ 5A CT ₽-⊕-¤ CT2 -⊕-c GROUND BUS LOCATED IN LOW VOLTAGE SECTION J8
LINE VOLTAGE
SENSING DIVIDER
CARD **-**⊗-®1 R4 ®1 ⊚JR5 STAT FBK THREE WIRE CONTROL MEDIUM VOLTAGE MX³ CARD ASSEMBLY BIPC-450100-01 CONSISTS OF BIPC-300055-02 (TOP) & BIPC-300034-01 (BOTTOM) STOP RESET START MENU ② DIS ③ DIS ④ DI7 J6 PROGRA DIGITAL INPUTS BBBB LOCATED IN LOW VOLTAGE SECTION

Figure 45: Wye Delta Motor Connection to the MVRMX³

The MX³ utilizes an intelligent Wye to Delta transition algorithm. During starting, if the measured motor current drops below 85% of FLA and more than 25% of the Up To Speed timer setting has elapsed, then a Wye to Delta transition occurs. The intelligent transition algorithm prevents unnecessarily long motor starts which reduces motor heating. If a Wye to Delta transition has not already occurred, a transition always occurs when the complete Up To Speed Time expires.

The MX³ can operate two configurations of Wye-Delta starters, open transition and closed transition. An open transition starter momentarily disconnects the motor from the input line during the transition from Wye to Delta operating mode. A closed transition starter uses resistors that are inserted during the transition so that the motor is never completely disconnected from the input line. The presence of the resistors in a closed transition starter smooths the transition. A typical closed transition Wye-Delta starter schematic is shown in Figure 45 on page 140.

The closed transition resistors generally are sized to be in the circuit for a short period of time. To protect the resistors from over heating, one input should be programmed as a Bypass/2M contact feedback input and the Bypass/2M confirm parameter must be set.

For the Wye-Delta starter mode to operate properly one output relay needs to be programmed to the RUN output function and another output relay needs to be programmed to the UTS output function. (Refer to the Relay Output Configuration parameters on page 91 for more information).

Based on the typical closed transition schematic shown in Figure 45, when a start command is given, the starter enters the Wye starting mode by energizing the relay programmed as RUN.

The transition to Wye (Starting) mode occurs as follows:

- Start command is given to the starter.
- 2. The RUN relay is energized which energizes the 1S contactor.
- 3. When the 1S contactor pulls in, the 1M contactor is energized.

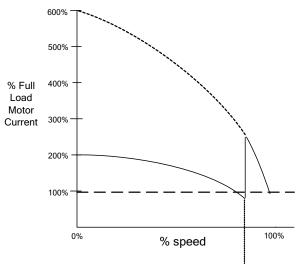
The MX³ starter remains in the Wye mode until either:

- 1. The start command is removed.
- 2. The Up To Speed Time expires.
- The measured motor current is less than 85% of FLA and more than 25% of the Up To Speed Timer setting has elapsed.
- A fault occurs.

When the Up To Speed Time expires, the starter changes from Wye starting mode to the Delta or normal running mode by energizing the relay programmed as UTS. In Delta mode, the RUN and UTS relays are both energized and the motor is connected in the normal running Delta configuration.

The transition to Delta (Run) mode occurs as follows:

- 1. The UTS relay is energized which energizes the 2S contactor.
- 2. When the 2S contactor pulls in, resistors are inserted in the circuit and the 1S contactor is de-energized.
- 3. When the 1S contactor drops out the 2M contactor is energized.
- When the 2M contactor is pulled in, feedback can be sent to the MX³ control card to confirm that the transition sequence to Delta is complete.


The starter remains in the Delta or running mode until the start command is removed or a fault occurs.

Usually the MX³ intelligent Wye to Delta transition algorithm provides an optimal transition point that minimizes the transient current and torque surges that can occur. However, the Wye to Delta transition may occur only after the Up To Speed Time has expired. In order to reduce the current surge during the transition from Wye to Delta mode, the Up To Speed Time parameter should be adjusted so that the transition occurs as close to full speed as possible within the constraints of the load. If the Up To Speed Time is set too short, a large current and torque surge may occur during the transition. If the Up To Speed Time is set too long, the motor may not have sufficient torque to continue accelerating when in Wye mode and may stop accelerating at a low speed until the transition to Delta mode occurs. If this occurs, the start is unnecessarily prolonged and motor heating is increased.

A typical closed transition Wye-Delta starting current profile is shown in Figure 46.

Figure 46: Wye Delta Profile

Wye-Delta Closed Transition Current Profile

Transition from Wye to Delta mode

A digital input can be programmed as a 2M contactor feedback input. This input provides verification that the 2M contactor has fully closed preventing operation when the transition resistors are still connected in the motor circuit. The use of this feedback is recommended to prevent the overheating of the transition resistors if the 2M contactor does not close properly. The 2M confirmation trip time can be adjusted by modifying the Bypass Feedback Time parameter.

NOTE: When in Wye-Delta mode, the acceleration ramp, kick, and deceleration settings have no effect on motor operation.

₩ NOTE: When in Wye-Delta mode, the SCR gate outputs are disabled.

Across The Line Starter

7.8 Across The Line (Full Voltage Starter)

When the Starter Type parameter is set to ATL, the MX^3 is configured to operate an electro mechanical full voltage or across-the-line (ATL) starter.

In the ATL configuration, the MX^3 assumes that the motor contactor (1M) is directly controlled by a digital output relay that is programmed for the RUN function. Therefore, when a start command is given, the RUN programmed relay energizes the motor contactor, which applies power to the motor. When the MX^3 determines that the motor is at full speed, the up-to-speed (UTS) condition is indicated by energizing the UTS programmed relays. When configured as an ATL starter, all MX^3 motor and starter protective functions, except bad SCR detection and power stack overload, are available to provide full motor and starter protection.

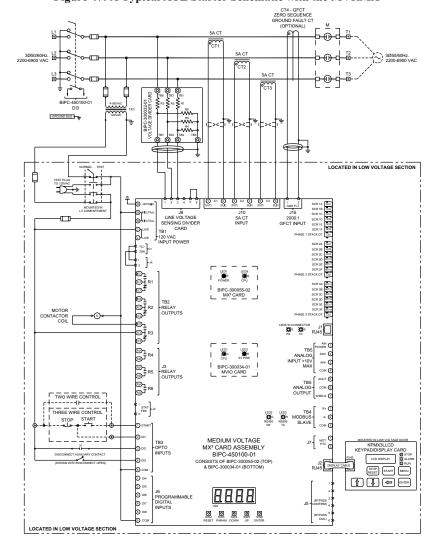
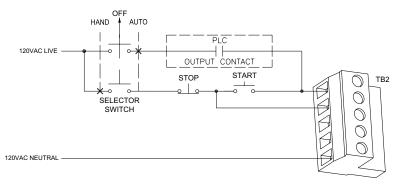


Figure 47: A Typical ATL Starter Schematic with the MVRMX³

NOTE: When in ATL mode, the acceleration ramp, kick, and deceleration parameter settings have no effect on motor operation.

₩ NOTE: When in ATL mode, the SCR gate outputs are disabled.

Start/Stop Control with a Hand/Off/Auto Selector Switch


7.9 Start/Stop Control with a Hand/Off/Auto Selector Switch

Often times, a switch is desired to select between local or "Hand" mode and remote or "Auto" mode. In most cases, local control is performed as 3-wire logic with a normally open, momentary contact Start pushbutton and a normally closed, momentary contact Stop pushbutton, while remote control is performed as 2-wire logic with a "Run Command" contact provided by a PLC.

The MX³ can perform both 2-wire start/stop logic and 3-wire start/stop logic. With 2-wire logic, the starter starts when a run command is applied to the Start input. It continues to run until the run command is removed from the Start input. With 3-wire logic, the starter starts when a start command is momentarily applied to the Start input and continues to run until an input programmed as a Stop input goes low.

The MX³ automatically determines whether to use 2-wire logic or 3-wire logic by the presence of a high level on a Stop input. If there is an input programmed as a Stop input, and that input is high when the Start input goes high, then 3-wire start/stop logic is used. Otherwise, 2-wire start/stop logic is used. This feature eliminates the need for external logic relays often used to "seal in" the momentary Start and Stop pushbuttons, creating a 2-wire logic signal. The key is to have the Stop input be high when the Hand/Off/Auto switch is in the Hand position, but be low when the switch is in the Auto position. The following wiring diagram illustrates a possible implementation. In this example, DI 1 on the MX³ is programmed as a Stop input.

Figure 48: Example of Start/Stop with a Hand/Off/Auto Selector Switch

When the Hand/Off/Auto selector switch is in the Hand position, current flows to the Stop push button contact and to the Stop input on the MX^3 . If the Stop is not pressed and the Start push button is pressed the starter starts. This is a typical 3-wire control. The seal for the Start push button input is accomplished in software. When the stop is pressed, the starter stops.

When the Hand/Off/Auto selector switch is in the Auto position, current flows to the user supplied run contact, but the Stop input remains low. When the user supplied run contact closes, and the stop input is low (no power applied) the starter is in 2-wire control.

CAUTION: It is important that the Stop push button be wired in front of the Start push button, otherwise the starter could be started when the Stop bush button is pressed and the Start button is pressed.

Simplified I/O Schematics

7.10 Simplified I/O Schematics

Figure 49: Digital Input Simplified Schematic

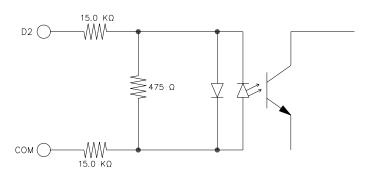


Figure 50: Analog Input Simplified Schematic

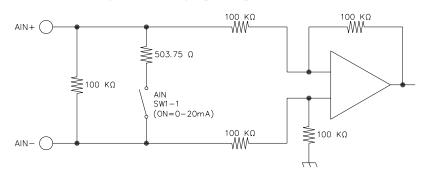
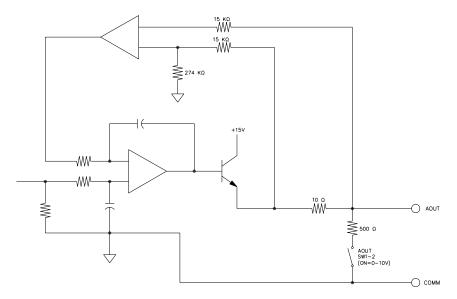



Figure 51: Analog Output Simplified Schematic

Remote Modbus Communications

7.11 Remote Modbus Communications

The MX³ starter provides Modbus RTU to support remote communication.

The communication interface is RS-485, and allows up to 247 slaves to be connected to one master (with repeaters when the number of drops exceeds 31). Please refer to Figures 52 and 53 for connection diagrams.

7.11.1 Supported Commands

The MX³ supports the following Modbus commands:

- Read Holding Registers (03 hex)
- Read Input Registers (04 hex)
- Preset Single Register (06 hex)
- Preset Multiple Registers (10 hex)

Up to 64 registers may be read or written with a single command.

7.11.2 Modbus Register Addresses

The Modbus specification defines holding registers to begin at 40001 and input registers to begin at 30001. Holding registers may be read and written. Input registers may only be read.

In the MX³, the register maps are identical for both the holding registers and the input registers. For example, the Motor FLA (QST 01) parameter is available both in holding register 40101 and in input register 30101. This is why the register addresses in the Modbus Register Map are listed with both numbers (e.g. 30101/40101).

7.11.3 Cable Specifications

Good quality twisted, shielded communications cable should be used when connecting to the Modbus port on the MX^3 . The cable should contain two twisted pairs and have an overall shield. Use one pair of conductors for the A(-) and B(+) signals. Use the other pair of conductors for the Common signal. The cable should adhere to the following specifications.

Conductors: 2 twisted pair
Impedance: 100 Ohm to 120 Ohm
Capacitance: 16 pF/ft or less

Shield: Overall shield or individual pair shields

Examples of cables that meet these specifications are Belden part number 9842 and Alpha Wire part number 6412.

7.11.4 Terminating Resistors

The MX³ does not have a terminating resistor for the end of the trunk line. If a terminating resistor is required, the resistor must be wired to the terminal block.

The purpose of terminating resistors is to eliminate signal reflections that can occur at the end of a network trunk line. In general, terminating resistors are not needed unless the bit rate is very high, or the network is very long. In fact, terminating resistors place a large load on the network and may reduce the number of drops that may be placed on the network.

The maximum baudrate of 19,200 supported by the MX^3 is not high enough to warrant a terminating resistor unless the network is extremely long (3,000 feet or more). A terminating resistor should only be installed on the MX^3 if signal reflection is known to be a problem and only if the MX^3 is at the end of the network. Terminating resistors should never be installed on nodes that are not at the end of the network.

7.11.5 Grounding

RS-485 buses with isolated nodes are most immune to noise when the bus is not connected to earth ground at any point. If electrical codes require that the bus be connected to earth ground, then the Common signal should be connected to earth ground at one point and one point only. If the Common signal is connected to earth ground at more than one point, then significant currents can flow through the Common signal when earth ground potentials are different at those points. This can cause damage to devices attached to the bus.

7.11.6 Shielding

The shield should be continuous from one end of the trunk to the other. The shield must be tied to the RS-485 Common signal at one point and one point only. If the shield is not tied to Common at any point or is tied to Common at more than one point, then its effectiveness at eliminating noise is greatly reduced.

7.11.7 Wiring

Figure 52 shows the wiring of TB4 to a Modbus-485 Network. If the starter is the end device in the network, a 120Ω , 1/4W terminating resistor may be required. Please refer to Figure 53 for wire and termination practices.

Figure 52: TB4 Connector

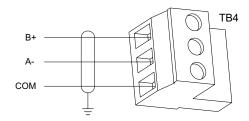
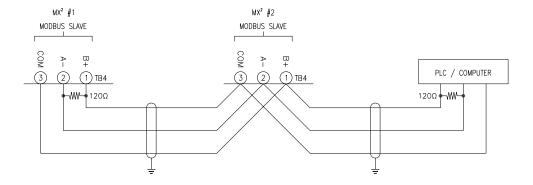



Figure 53: Modbus Network Wiring Example

NOTES:

Troubleshooting 8 & Maintenance

Safety Precautions

8.1 Safety Precautions

For safety of maintenance personal as well as others who might be exposed to electrical hazards associated with maintenance activities, the safety related work practices of NFPA 70E, Part II, should always be followed when working on electrical equipment. Maintenance personnel must be trained in the safety practices, procedures, and requirements that pertain to their respective job assignments.

WARNING: To avoid shock hazard, disconnect main before working on controller/starter, motor or control devices such as start/stop pushbuttons. Procedures which require parts of the equipment to be energized during troubleshooting, testing, etc, must be performed by properly qualified personnel, using appropriate work practices and precautionary measures as specified in NFPA70, Part II.

CAUTION: Disconnect the controller/starter from the motor before measuring insulation resistance (IR) or the motor windings. Voltages used for insulation resistance testing can cause failure of SCR's. Do not make any measurements on the controller with an IR tester (megger).

NOTE: Blades against ground bar (in circular picture).

Preventative Maintenance

8.2 Preventative Maintenance

8.2.1 General Information

Preventative maintenance performed on a regular basis will help ensure that the starter continues to operate reliably and safely. The frequency of preventative maintenance depends upon the type of maintenance and the installation site's environment.

NOTE: A trained technician should always perform preventative maintenance.

8.2.2 Preventative Maintenance

During Commissioning:

- Torque all power connections during commissioning. This includes factory wired equipment.
- · Check all of the control wiring in the package for loose connections.
- If fans are installed, ensure proper operation

One month after the starter has been put in operation:

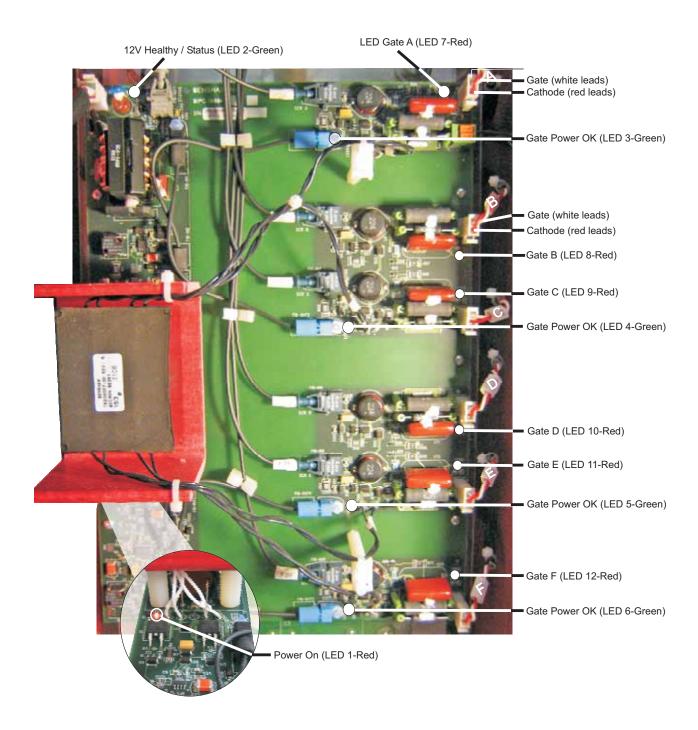
- · Re-torque all power connections during the month. This includes factory wired equipment.
- Inspect the cooling fans after two weeks to ensure proper operation.

After the first month of operation:

- · Re-torque all power connections every year.
- Clean any accumulated dust from the starter using a clean source of compressed air or a vacuum cleaner.
- Inspect the cooling fans every three months to ensure proper operation.
- Clean or replace any air vent filters on the starter every three months.

NOTE: If mechanical vibrations are present at the installation site, inspect the electrical connections more frequently.

LED Diagnostics


8.3 LED Diagnostics

There are several LEDs located on the $MVRMX^3$ circuit cards. These LEDs can be used to help troubleshoot problems with the starter. Refer to the circuit card layouts for LED locations.

CARD	LED#	Description	INDICATION
	LED1 (Red)	CPU Power	On when power is applied.
	LED8 (Green)	CPU heart beat	Flash once per second.
MX ³ Assembly	LED1 (Green)	I/O CPU heart beat	Flash once per second.
BIPC-450100-01-01	LED3 (Red)	5V Power for I/O card	On when power is applied.
	J1 (Green)	Modbus RX (receive)	Flash twice per second when receiving.
	J1 (Red)	Modbus TX (transmit)	Flash twice per second when sending.
	LED1 (Red)	Card power supply is sending power to the 6 isolated gate drive circuits	On if control voltage is present.(located behind transformer)
	LED2 (Green)	 6 isolated gate drive circuits are receiving power Input DC voltage to the card power supply is acceptable Stack thermal switch is closed 	On if card is OK.
	LED3 (Green)	-Gate drive circuit for SCR A has power -Stack thermal switch is closed	On if voltage is present.
Gate Driver Card	LED4 (Green)	Gate drive circuits for SCR B & C have power	On if voltage is present.
BIPC-300047-01	LED5 (Green)	Gate drive circuits for SCR D & E have power	On if voltage is present.
	LED6 (Green)	Gate drive circuit for SCR F has power	On if voltage is present.
	LED7 (Red)	SCR gate A is Firing	On when SCR is being fired.
	LED8 (Red)	SCR gate B is Firing	On when SCR is being fired.
	LED9 (Red)	SCR gate C is Firing	On when SCR is being fired.
	LED10 (Red)	SCR gate D is Firing	On when SCR is being fired.
	LED11 (Red)	SCR gate E is Firing	On when SCR is being fired.
	LED12 (Red)	SCR gate F is Firing	On when SCR is being fired.
OPTIONAL RTD Modules			
Remote	TX (Red)	Transmit Data	Flash once per second when card is transmitting data.
RTD Module SPR-100P	RX (Green)	Receive Data	Flash twice per second when card is receiving data.
	Status (Green)	Operation	Flash once per second.
DC Power Supply	DC ON (Green)	DC voltage is On	Stays on when RTD module has power.

₩ NOTE: The SCR Gate Firing LEDs (RED / LED 7, 8, 9, 10, 11, 12) are always turned off expect during the BIST test and start up.

RediStart MVRMX3 Gate Driver Card

ATTENTION:

The Fiber Optic cables can be damaged if struck or bent sharply. The edge of the printed circuit board should be held to prevent damage.

General Troubleshooting Charts

8.4 General Troubleshooting Charts

The following troubleshooting charts can be used to help solve many of the common issues that may occur.

8.4.1 Stack Overtemp Lockout

Stack Overtemp Lockout

Condition	Cause	Solution
	Factory Reset in (FUN 22) was entered.	Enter the equipment specified rated voltage in Rated Voltage (FUN05).
		Enter the value of the CTs supplied with the MVRMX ³ into the CT Ratio parameter (FUN 03).
Display screen displays what is shown above.		Set DI #2 - (I/O02) to "inline confirm".
above.	Fiber Optic connections (FS1, FS2 or FS3) are not connected on the bottom of the I/O board or to each gate driver card.	Set DI #3 - (I/O03) to "disconnect".
		Set Relay #3 - (I/O12) to "running".
		Reconnect the Fiber optics.
Display screen displays what is shown above plus (Green / LED3) on driver	J3 connection (Stack OT) on the upper right hand corner of any 3 gate driver cards is bad.	Reconnect the two wires into the J3 connection.
card is NOT lit.		Check Power Supply
Display screen displays what is shown	Fiber Optic connections are bad.	Check for damaged fiber optic cables.
above plus any of the (Green / LED 3, 4, 5, 6) are NOT lit.		Check for bad connections.

8.4.2 Motor does not start, no output to motor

Condition	Cause	Solution
Display Blank, CPU Heartbeat LED on	Control voltage absent.	Check for proper control voltage input. Verify fuses and wiring.
MX ³ board not blinking.	MX ³ control board problem.	Consult factory.
Fault Displayed.	Fault Occurred.	See fault code troubleshooting table for more details.
Start command given but nothing	Start/Stop control input problems.	Verify that the start/stop wiring and start input voltage levels are correct.
happens.	Control Source parameters (QST 04 - 05) not set correctly.	Verify that the parameters are set correctly.
	No line voltage has been detected by the MX^3 when a start command is given.	Check input supply for inline contactor, open disconnects, open fuses, open circuit breakers, or disconnected wiring.
NOL or No Line is displayed and a start command is given, it will fault in F28.		Verify that the SCR gate wires are properly connected to the MX ³ control board.
command is given, it will fault in F26.		On medium voltage systems, verify wiring of the voltage feedback measurement circuit.
		See fault code troubleshooting table for more details.

8.4.3 During starting, motor rotates but does not reach full speed

Condition	Cause	Solution
Fault Displayed.	Fault Occurred.	See fault code troubleshooting table for more details.
	Maximum Motor Current setting (QST07) set too low.	Review acceleration ramp settings.
	Motor loading too high and/or current not dropping below 175% FLA indicating that the motor has not come up to speed.	Reduce load on motor during starting.
Display shows Accel or Run.	Motor FLA (QST01) or CT ratio (FUN03) parameter set incorrectly.	Verify that Motor FLA and CT ratio parameters are set correctly.
	Abnormally low line voltage.	Fix cause of low line voltage.
	A mechanical or supplemental brake is still engaged.	Verify that any external brakes are disengaged.
	Initial current (QST06) to low.	Increase initial current.
Motor Hums before turning.	Motor FLA (QST01) is incorrect	Review Motor FLA set point.
	CT ratio (FUN03) is incorrect	Review CT ratio set point.

8.4.4 Starter not accelerating as desired

Condition	Cause	Solution
	Ramp time 1 (QST08) too short.	Increase ramp time.
	Initial current (QST06) set too high.	Decrease Initial current.
	Maximum current (QST07) set too high.	Decrease Maximum current.
N	Kick start current (CFN11) too high.	Decrease or turn off Kick current.
Motor accelerates too quickly.	Kick start time (CFN12) too long.	Decrease Kick time.
	Motor FLA (QST01) or CT ratio (FUN03) parameter set incorrectly.	Verify that Motor FLA and CT ratio parameters are set correctly.
	Starter Type parameter (FUN07) set incorrectly.	Verify that Starter Type parameter is set correctly.
	Maximum Motor Current setting (QST07) set too low.	Review acceleration ramp settings.
	Motor loading too high.	Reduce load on motor during starting.
Motor accelerates too slowly.	Motor FLA (QST01) or CT ratio (FUN03) parameter set incorrectly.	Verify that Motor FLA and CT ratio parameters are set correctly.
	Abnormally low line voltage.	Fix cause of low line voltage.
	Ramp time to long.	Decrease ramp time.

8.4.5 Starter not decelerating as desired

Condition	Cause	Solution
	Decel Time (CFN18) set too short.	Increase Decel Time.
Motor stops too quickly.	Decel Begin and End Levels (CFN16 and CFN17) set improperly.	Increase Decel Begin and/or Decel End levels.
Decel time seems correct but motor surges (oscillates) at beginning of deceleration cycle.	Decel Begin Level (CFN16) set too high.	Decrease Decel Begin Level until surging is eliminated.
Decel time seems correct but motor stops before end of deceleration cycle.	Decel End Level (CFN17) set too low.	Increase Decel End Level until motor just stops at the end of the deceleration cycle.
W. I. C. I.	Decel End Level (CFN17) set too high.	Decrease Decel End Level until water hammer is eliminated.
Water hammer still occurs at end of cycle.	Decel Time (CFN18) too short.	If possible, increase Decel Time to decelerate system more gently.
Motor speed drops sharply before decel.	Decel Begin Level (CFN16) too low.	Increase the Decel Begin Level until drop in speed is eliminated.

8.4.6 Motor stops unexpectedly while running

Condition	Cause	Solution
Fault Displayed.	Fault Occurred.	See fault code troubleshooting table for more details.
Ready Displayed.	Start command lost.	Verify start command input signal is present or serial communications start command is present.
		Check any permissive that may be wired into the run command (Start/Stop)
Display Blank, Heartbeat LED on MX ³ card not blinking.	Control voltage absent.	Check for proper control voltage input. Verify wiring and fuses.
card not offiking.	MX ³ control card problem.	Consult factory.

8.4.7 Metering incorrect

Condition	Cause	Solution
Power Metering not reading correctly.	CTs installed or wired incorrectly.	Verify correct CT wiring and verify that the CTs are installed with all the White dots towards the input line side. CT1=L1 CT2=L2 CT3=L3
	CT ratio parameter (FUN03) set incorrectly.	Verify that the CT ratio parameter is set correctly.
PF Meter not reading correctly.	CTs installed or wired incorrectly.	Verify correct CT wiring and verify that the CTs are installed with all the White dots towards the input line side.
	Energy Saver active.	Turn off Energy Saver if not desired.
	Loose connections.	Shut off all power and check all connections.
Motor Current or Voltage meters fluctuating with steady load.	SCR fault.	Verify that the SCRs gate leads are connected properly and the SCRs are ok.
	Load actually is not steady.	Verify that the load is actually steady and that there are not mechanical issues.
	Other equipment on same power feed causing power fluctuations and/or distortion.	Fix cause of power fluctuations and/or distortion.
Voltage Metering not reading correctly.	In medium voltage systems, Rated Voltage parameter (FUN05) set incorrectly.	Verify that Rated Voltage parameter is set correctly.
	CT ratio parameter (FUN03) set incorrectly.	Verify that the CT ratio (FUN03) parameter is set correctly.
Current Metering not reading correctly.	CTs installed or wired incorrectly.	Verify correct CT wiring and verify that the CTs are installed with all the White dots towards the input line side.CT1=L1 CT2=L2 CT3=L3
	CT ratio parameter (FUN03) set incorrectly.	Verify that the CT ratio parameter is set correctly.
Residual Ground Fault Current Metering not reading correctly.	CTs installed or wired incorrectly.	Verify correct CT wiring and verify that the CTs are installed with all the White dots towards the input line side.CT1=L1 CT2=L2 CT3=L3
Zero Sequence GF Metering not reading correctly.	CT installed or wired incorrectly.	Verify CT installation.

8.4.8 Other Situations

Condition	Cause	Solution
Motor Pototos in Wrong Direction	Phasing incorrect	If input phasing correct, exchange any two output wires.
Motor Rotates in Wrong Direction.	Phasing incorrect.	If input phasing incorrect, exchange any two input wires.
Erratic Operation.	Loose connections.	Shut off all power and check all connections.
	Motor overloaded.	Reduce motor load.
	Too many starts per hour.	Allow for adequate motor cooling between starts. Set Hot/Cold ratio higher or lengthen cooling time.
Motor Overheats.	High ambient temperature.	Reduce ambient temperature or provide for better cooling. Set OL class lower to compensate for ambient temperature.
	Acceleration time too long.	Reduce starting load and/or review acceleration ramp settings.
	Incorrect motor OL settings.	Review and correct if necessary motor OL settings.
	Motor cooling obstructed/damaged.	Remove cooling air obstructions. Check motor cooling fan.
	Fan power supply lost.	Verify fan power supply, check fuses.
Starter cooling fans do not operate. (When Present)	Fan wiring problem.	Check fan wiring.
(Fan failure.	Replace fan
	Voltage/Current output switch (SW1-2) not set correctly.	Set SW1-2 to give correct output.
	Wiring problem.	Verify output wiring.
	Analog Output Function parameter (I/O21) set incorrectly.	Verify that the Analog Output Function parameter is set correctly.
Analog Output not functioning properly.	Analog Output Offset and/or Span parameters (I/O23 and I/O22) set incorrectly.	Verify that the Analog Output Span and Offset parameters are set correctly.
	Load on analog output too high.	Verify load on analog output meets the MX³ analog output specifications.
	Ground loop or noise problems.	Verify correct grounding of analog output connection to prevent noise and/or ground loops from affecting output.
Remote Keypad does not operate correctly.	Keypad cable not plugged in properly or cable is damaged.	Verify that the remote keypad cable has not been damaged and that it is properly seated at both the keypad and the MX ³ control card.
	Remote display damaged.	Replace remote display.
	Passcode is set.	Clear Passcode.
Count down and the	Starter is running.	Stop Starter.
Cannot change parameters.	Modbus is overriding.	Stop communications.
	Heater Level (FUN08) is set to "On".	Turn Heater Level (FUN08) "Off".

Fault Code Table

8.5 Fault Code Table

The following is a list of possible faults that can be generated by the MX starter control.

Fault Code	Description	Detailed Description of Fault / Possible Solutions
		Motor did not achieve full speed before the UTS timer (QST 09) expired.
		Check motor for jammed or overloaded condition.
		Verify that the combined kick time (CFN 12) and acceleration ramp time (QST 08) is shorter than the UTS timer (QST 09) setting.
F01	UTS Time Limit Expired	Evaluate acceleration ramp settings. The acceleration ramp settings may be too low to permit the motor to start and achieve full speed. If so, revise acceleration ramp settings to provide more motor torque during starting.
		Evaluate UTS timer setting and, if acceptable, increase UTS timer setting (QST 09).
		Check motor for mechanical failure, jammed, or overloaded condition.
		Verify the motor thermal overload parameter settings (QST 03 and PFN 28 to PFN 35,) and motor service factor setting (QST 02).
		Verify that the motor FLA (QST 01) and CT ratio (FUN 03) settings are correct.
F02	Motor OL	If motor OL trip occurs during starting, review acceleration ramp profile settings.
		Verify that there is not an input line power quality problem or excessive line distortion present.
		Verify that PF caps, if installed, are ahead of CTs.
		Reset overload when content falls below Motor OL Lockout Level (PFN 34).
F03	Slow Speed Timer	Increase Slow Speed Timer (CFN 25).
F0.4		Increase Speed Switch Time (PFN 26).
F04	Speed Switch Time Limit Expired	Accelerate motor faster.
		Verify PTC thermistor specifications.
		Allow motor to cool, this will reset motor PTC thermistors.
F05	Matau PTC Occasiona anatoma	Check motor cooling fan.
FU3	Motor PTC Overtemperature	Clean debris off of motor.
		Reduce Overload.
		Reduce high ambient.
		Verify Stator RTD specifications.
		Allow motor to cool.
F06	Stator RTD Overtemperature	Check motor cooling fan.
F00	Stator KTD Overtemperature	Clean debris off of motor.
		Reduce Overload.
		Reduce high ambient.
		Verify Bearing RTD specifications.
		Replace bearings.
F07	Bearing RTD Overtemperature	Reduce load on bearings.
		Reduce high ambient.
		Reduce high vibrations.
		Verify Other RTD specifications
F08	Other RTD Overtemperature	Reduce load.
		Reduce high ambient.

Fault Code	Description	Detailed Description of Fault / Possible Solutions
F10	Phase Rotation Error, not ABC	Input phase rotation is not ABC and Input Phase Sensitivity parameter (FUN 04) is set to ABC only.
		Verify correct phase rotation of input power. Correct wiring if necessary.
		Verify correct setting of Input Phase Sensitivity parameter (FUN 04).
		Input phase rotation is not CBA and Input Phase Sensitivity parameter (FUN 04) is set to CBA only.
F11	Phase Rotation Error, not CBA	Verify correct phase rotation of input power. Correct wiring if necessary.
		Verify correct setting of Input Phase Sensitivity parameter (FUN 04).
		Line frequency below Under Freq Trip (PFN 15).
		Verify input line frequency.
F12	Low Line Frequency	If operating on a generator, check generator speed governor for malfunctions.
		Check input supply for open fuses or open connections.
		Line power quality problem / excessive line distortion.
		Line frequency above Over Freq Trip (PFN 14).
F13	High Line Frequency	Verify input line frequency.
1113	Trigil Line Frequency	If operating on a generator, check generator speed governor for malfunctions.
		Line power quality problem / excessive line distortion.
		Three-phase power has been detected when the starter is expecting single-phase power.
F14	Input nower not single phase	Verify that input power is single phase.
Г1 4	Input power not single phase	Verify that single-phase power is connected to the L1 and L2 inputs. Correct wiring if necessary.
		Verify that the SCR gate wires are properly connected to the MX ³ control card.
	Input power not three phase	Single-phase power has been detected when the starter is expecting three-phase power.
F15		Verify that input power is three phase. Correct wiring if necessary.
113		Verify that the SCR gate wires are properly connected to the MX ³ control card.
		On medium voltage systems, verify wiring of the voltage feedback measurement circuit.
		Low voltage below the Under voltage Trip Level parameter setting (PFN 11) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
F21		Verify that the actual input voltage level is correct.
F21	Low Line L1-L2	Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Check input supply for open fuses or open connections.
		On medium voltage systems, verify wiring of the voltage measurement circuit.
		Low voltage below the Under voltage Trip Level parameter setting (PFN 11) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
		Verify that the actual input voltage level is correct.
F22	Low Line L2-L3	Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Check input supply for open fuses or open connections.
		On medium voltage systems, verify wiring of the voltage feedback measurement circuit.
		Low voltage below the Under voltage Trip Level parameter setting (PFN 11) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
		Verify that the actual input voltage level is correct.
F23	Low Line L3-L1	Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Check input supply for open fuses or open connections.
		On medium voltage systems, verify wiring of the voltage feedback measurement
		circuit.

Fault Code	Description	Detailed Description of Fault / Possible Solutions
		High voltage above the Over voltage Trip Level parameter setting (PFN 10) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
F24	High Line L1-L2	Verify that the actual input voltage level is correct.
		Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Line power quality problems/ excessive line distortions.
		High voltage above the Over voltage Trip Level parameter setting (PFN 10) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
F25	High Line L2-L3	Verify that the actual input voltage level is correct.
		Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Line power quality problems/ excessive line distortions.
		High voltage above the Over voltage Trip Level parameter setting (PFN 10) was detected for longer than the Over/Under Voltage Trip delay time (PFN 12).
F26	High Line L3-L1	Verify that the actual input voltage level is correct.
		Verify that the Rated Voltage parameter (FUN 05) is set correctly.
		Line power quality problems/ excessive line distortions.
		The MX ³ has detected the loss of one or more input or output phases when the starter was running. Can also be caused by line power dropouts.
		Check input supply for open fuses.
F27	Phase Loss	Check power supply wiring for open or intermittent connections.
1.7	Thase Loss	Check motor wiring for open or intermittent connections.
		On medium voltage systems, verify wiring of the voltage feedback measurement circuit.
		Check Gate and Cathode connections to MX ³ card.
	No Line	No input voltage was detected for longer than the Inline Configuration time delay parameter setting (I/O 24) when a start command was given to the starter.
		If an inline contactor is being used, verify that the setting of the Inline Configuration time delay parameter (I/O 24) allows enough time for the inline contactor to completely close.
F28		Check input supply for open disconnects, open fuses, open circuit breakers or disconnected wiring.
		Verify that the SCR gate wires are properly connected to the MX ³ control card.
		On medium voltage systems, verify wiring of the voltage feedback measurement circuit.
F29	PORT Timeout	PORT fault timer timed out before line power returned.
F 29	FORT Timeout	Extend PORT fault time parameter (FUN 10) if possible.
		During operation, the MX ³ detected a very high level of current in one or more phases.
	100	Check motor wiring for short circuits or ground faults.
F30	I.O.C. (Instantaneous Over current)	Check motor for short circuits or ground faults.
	(instantaneous Over current)	Check if power factor or surge capacitors are installed on the motor side of the starter.
		Verify that the motor FLA (QST 01) and CT ratio (FUN 03) settings are correct.
F31	Over current	Motor current exceeded the Over Current Trip Level setting (PFN 01) for longer than the Over Current Trip Delay Time setting (PFN 02).
		Check motor for a jammed or an overload condition.
F34	Undercurrent	Motor current dropped under the Under Current Trip Level setting (PFN 03) for longer than the Under Current Trip Delay time setting (PFN 04).
1 34	- Charlette	Check system for cause of under current condition.

Fault Code	Description	Detailed Description of Fault / Possible Solutions
		The motor power factor went above the PF leading trip level.
F35	Power Factor Leading	Verify loading of motor.
		On synchronous motors, verify field supply current.
		The motor power factor went below the PF lagging trip level.
F36	Power Factor Lagging	Verify loading of motor.
		On synchronous motors, verify field supply current.
		A current imbalance larger than the Current Imbalance Trip Level parameter setting (PFN 05) was present for longer than the Curr Imbal Trip Time (PFN 06).
F37	Current Imbalance	Check motor wiring for cause of imbalance. (Verify dual voltage and 6 lead motors for correct wiring configuration).
		Check for large input voltage imbalances that can result in large current imbalances.
		Check motor for internal problems.
		Ground current above the Ground Fault Trip level setting (PFN 07 / PFN 08) has been detected for longer than the delay time (PFN 09) setting.
		Check motor wiring for ground faults.
		Check motor for ground faults.
F38	Ground Fault	Megger motor and cabling (disconnect from starter before testing).
150	Ground I duit	Verify that the motor FLA (QST 01) and CT ratio (FUN 03) settings are correct.
		Verify that the CTs are installed with all the White dots towards the input line.
		In Single phase applications, verify that only two CTs are being used; that they are installed with all the White dots or Xs in the correct direction; and that the CTs are connected to the L1 and L3 CT inputs on the MX ³ control card.
		Motor current went below 10% of FLA while the starter was running.
		Verify Motor Connections.
		Verify the CT wiring to the MX ³ control card.
F20	N. C P.	Verify that the motor FLA (QST 01) and CT ratio (FUN 03) settings are correct.
F39	No Current at Run	Check if load is still connected to starter.
		Check if motor may have been driven by the load (a regeneration condition).
		Check Gate and Cathode connections to MX ³ for loose connections.
		Check for inline contactor or disconnect.
		A shorted or open SCR condition has been detected.
		Verify that all SCR gate leads wires are properly connected at the SCR devices and the MX ³ control card.
F40	Shorted / Open SCR	Check all SCRs with ohmmeter for shorts.
F40		Verify that the Input Phase Sensitivity parameter setting (FUN 04) is correct.
		Verify that the Starter Type parameter setting (FUN 07) is correct.
		Verify the motor wiring. (Verify dual voltage motors for correct wiring configuration).
		Motor current was detected while the starter was not running.
	Current at Stop	Examine starter for shorted SCRs.
F41		Examine bypass contactor (if present) to verify that it is open when starter is stopped.
		Verify that the motor FLA (QST 01) and CT ratio (FUN 03) settings are correct.
		A signal on the disconnect digital input (I/O 01 - I/O 08) was not present when a start was commanded.
F46	Disconnect Open	Verify that disconnect feedback wiring is correct.
		Verify that disconnect is not faulty.

Fault Code	Description	Detailed Description of Fault / Possible Solutions
		The MX ³ electronic power stack OL protection has detected an overload condition.
F47	Stack Protection Fault (stack thermal overload)	Check motor for jammed or overloaded condition.
	thermal overload)	Verify that the CT ratio (FUN 03) is correct.
		Motor load exceeds power stack rating. Consult factory
		A digital input has been programmed as a Bypass/2M Contactor Feedback input and an incorrect bypass feedback has been detected for longer than the Bypass Confirm time parameter setting (I/O 25).
		Verify that the bypass/2M contactor coil and feedback wiring is correct.
F48	Bypass /2M Contactor Fault	Verify that the relay connected to the bypass/2M contactor(s) is programmed as the UTS function (I/O 10 - I/O 15).
		Verify that the bypass/2M contactor power supply is present (J4).
		Verify that the appropriate Digital Input Configuration parameter (I/O 01 -08) has been programmed correctly.
		Verify that the bypass contactor(s) are not damaged or faulty.
		The in-line contactor did not close.
F49	Inline Contactor Fault	Check wiring to coil of contactor.
F49	Imme Contactor Faunt	Check feedback wiring from auxiliary contactor to digital input (I/O 01 - 08).
		Check in-line fault delay (I/O 24).
		Low control power (below 90V) has been detected while running.
	Control Power Low	Verify that the control power input level is correct, especially during starting when there may be significant line voltage drop.
F50		Check control power transformer tap setting (if available).
		Check control power transformer fuses (if present).
		Check wiring between control power source and starter.
		Indicates that the MX ³ control card self-diagnostics have detected a problem with one or more of the current sensor inputs.
F51	Current Sensor Offset Error	Verify that the motor FLA (QST 01) and CT ratio (FUN 03) are correct.
131	Current sensor Offset Effor	Verify that no actual current is flowing through any of the starter's CTs when the starter is not running.
		Consult factory if fault persists.
		No tachometer signal detected during start or run.
		Verify tachometer wiring and level of signal.
F53	Tachometer Signal Loss	Verify tachometer Full Speed Voltage (FUN 13) setting.
		Extend Tachometer Loss Time (FUN 14) to allow time for motor to start turning.
		Increase Initial Current to make sure motor starts turning immediately after the start command is given.
	BIST Fault	The Build In Self Test was cancelled.
		The disconnect (if present) was closed during standard BIST testing.
F54		Line voltage and/or phase current was detected during standard BIST testing.
		During powered BIST testing the disconnect was opened during testing.
		During powered BIST testing line voltage was lost during testing.
F55	BIST CT Fault	During powered BIST testing the starter detected that one or more CTs are located on the incorrect phases or one or more CT's polarities are reversed.
		Verify CT wiring, positioning and direction.
F56	RTD Open or Shorted	An open or shorted RTD was detected.
100	Terb open or onorted	Verify the condition and wiring of the RTD.

Fault Code	Description	Detailed Description of Fault / Possible Solutions		
F60	External Fault on DI#1 Input			
F61	External Fault on DI#2 Input			
F62	External Fault on DI#3 input			
F63	External Fault on DI#4 input	DI # 01 - 08 (I/O 01 - 08) has been programmed as a fault type digital input and the input indicates a fault condition is present.		
F64	External Fault on DI#5 input			
F65	External Fault on DI#6 input			
F66	External Fault on DI#7 input			
F67	External Fault on DI#8 input	Increase Digital Fault Input Trip Time (I/O 09).		
		Based on the Analog Input parameter settings, the analog input level has either exceeded or dropped below the Analog Input Trip Level setting (I/O 17) for longer than the Analog Input Trip Delay time (I/O 18).		
		Measure value of analog input to verify correct reading.		
F71	Analog Input Level Fault Trip.	Verify settings of all Analog Input parameters (I/O 16 - I/O 20).		
		Verify correct positioning of input switch (SW1-1) (Voltage or Current) on the MX ³ control card.		
		Verify correct grounding of analog input connection to prevent noise or ground loops from affecting input.		
	RTD Module Communications	Communications with the RTD module(s) has been lost.		
		Verify RS-485 wiring between RTD module(s) and MX ³ card set.		
F80	Fault	Verify RTD module 24VDC power supply.		
		Verify that the RTD module(s) are set to the same address as the MX ³ module address parameters RTD 01 and RTD 02.		
	Keypad Communication Fault	Indicates that communication has been lost with the remote keypad.		
		(This fault normally occurs if the remote keypad is disconnected while the MX ³ control card is powered up.		
F81		Verify that the remote keypad cable has not been damaged and that its connectors are firmly seated at both the keypad and the MX ³ control card.		
		Route keypad cables away from high power and/or high noise areas to reduce possible electrical noise pickup.		
		Indicates that the starter has lost serial communications. Fault occurs when the starter has not received a valid serial communications within the Communication Timeout parameter (FUN 18) defined time.		
F82	Modbus Timeout Fault	Verify communication parameter settings (FUN 16 - FUN 19).		
		Check wiring between the remote network and the MX ³ control card.		
		Examine remote system for cause of communication loss.		
		Communication between the two MX ³ cards has been lost.		
F84	MX ³ to I/O Card Communication Fault (Interboard fault)	Verify that both cards are mounted together and that the mounting hardware is not loose.		
		Verify that no foreign matter is located between the two boards.		
		Consult factory if fault persists.		
F85	I/O Card SW version Fault	Typically occurs when attempting to run a version of application software that is incompatible with the bottom I/O card. Verify that the software is a correct version for the I/O card being used. Consult factory for more details.		
	I/O Card Current Offset Error	Indicates that the I/O card self-diagnostics have detected a problem with the zero sequence ground fault input.		
F86		If no zero sequence ground fault CT is connected to input, verify that parameters ZS GF Lvl (PFN 08) is turned "Off".		
		Verify that no current is flowing through the zero sequence ground fault CT.		
		verify that no earrent is nowing through the zero sequence ground natio C1.		

Fault Code	Description	Detailed Description of Fault / Possible Solutions	
F87	I/O Card Error	I/O card has detected a problem with the Real Time Clock operation. Consult factory.	
F88	I/O Card Error	I/O card has detected an internal CPU problem. Consult factory.	
F89	I/O Card SW Watchdog	I/O card has detected an internal software problem. Consult factory.	
F90	I/O Card Error	I/O card has detected an internal CPU problem. Consult factory.	
F91	I/O Card Program EPROM Checksum	I/O card has detected an internal CPU problem. Consult factory.	
F94	CPU Error – SW Fault	Typically occurs when attempting to run a version of control software that is incompatible with the MX^3 control card hardware being used. Verify that the software is a correct version for the MX^3 control card being used. Consult factory for more details.	
		Fault can also occur if the MX ³ control has detected an internal software problem. Consult factory.	
F95	CPU Error – Parameter EEPROM Checksum Fault	The MX ³ found the non-volatile parameter values to be corrupted. Typically occurs when the MX ³ is re-flashed with new software.	
		Perform a Factory Parameter reset and then properly set all parameters before resuming normal operation.	
		If fault persists after performing a Factory Parameter reset, consult factory.	
F96	CPU Error	The MX ³ has detected an internal CPU problem. Consult factory.	
F97	CPU Error – SW Watchdog Fault	The MX ³ has detected an internal software problem. Consult factory.	
F98	CPU Error	The MX³ has detected an internal CPU problem. Consult factory.	
	CRYLE B EDDOM	The non-volatile program memory has been corrupted.	
F99	CPU Error – Program EPROM Checksum Fault	Consult factory. Control software must be reloaded in to the MX ³ control card before normal operation can resume.	

Minimum Safety Practices

8.6 Minimum Safety Practices

Before performing any tests on electrical equipment make certain all PPE (Personal Protective Equipment) is worn. Check with your Health and Safety co-ordinator or for more information see (www.NFPA.ORG) Electrical Safety in the workplace.

Open the disconnect switch and perform lockout and tag procedures. After opening the switch and before opening door, use the viewing window to ensure that all three Load Break Interrupter Switch blades are open and resting on the ground bar. Use a flashlight if necessary (see picture).

There are several interlocks on the switches. They are for personal and/or equipment protection. Under no circumstances should they be made inoperative when the switch is in service. To do so could cause bodily injury, death and/or property damage.

Prior to commencing any testing procedures, ensure that the designated five minute wait period has passed, then discharge any power factor correction capacitors if present. The wait time allows the charge in the capacitors to dissipate.

Inspect the LV section first, using a voltage sniffer to verify that all voltage has been successfully removed or discharged.

Next, conduct the same tests within the MV section.

A smell test is then needed to detect a scent of burning or any visual trace of burn damage to the system.

Follow all grounding procedures set forth by the health and safety co-ordinator. If no such procedures are available contact NFPA 70E for the proper procedure.

Never energize a switch without the arc chutes and barriers installed in place.

For more details refer to Powercon PIF or Micro-Rupter Load Break Interrupter Switch Instruction Book with the switch model number supplied with the starter.

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Only qualified personnel familiar with medium voltage equipment are to perform work described in this set of
 instructions.
- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E.
- Turn off all power before working on or inside equipment.
- Use a properly rated voltage sensing device to confirm that the power is off.
- Before performing visual inspections, tests, or maintenance on the equipment, disconnect all sources of electric power. Assume that circuits are live until they have been completely de-energized, tested, and tagged. Pay particular attention to the design of the power system. Consider all sources of power, including the possibility of backfeeding.
- Replace all devices, doors, and covers before turning on power to this equipment.

Failure to follow these instructions will result in death or serious injury.

Ohm Meter Testing

8.7 Ohm Meter Testing

A few reasons for an SCR Test Procedure would be if the starter is receiving shorted SCR trips, current imbalance trips, or ground fault trips - basically the SCR is not turning on properly. If any cards have been replaced, it is also recommended to do a BIST test (see BIST testing). A ohmmeter will be needed to perform the following tests. For accurate results, it is important to use the same ohmmeter throughout the tests and for each SCR in the starter. If all ohm readings are within specified limits, then the SCRs can be considered good and this procedure completed.

8.7.1 Fuse Tests

Perform ohmmeter resistance across both power and control fuses. Verify fuses for continuity.

8.7.2 Shorted SCR Test

This will test the anode to cathode integrity of the SCR. Use the following table and figure to place the ohmmeter probes. You should not need to remove components to perform the ohmmeter tests.

₩ NOTE: Figure 54 is the heat sinks that are underneath the 3 separate cards. Place the leads of the ohmmeter on the heat sinks behind the gate driver card.

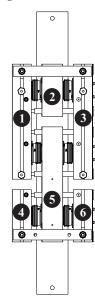
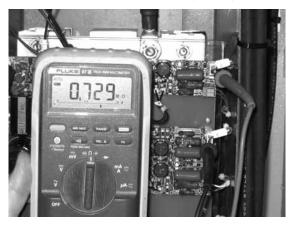


Figure 54: Heat sinks

Table 17: Ohmmeter Position

Test	Ohm Meter Reading	Results	Value
F 2: 14 2: 0	Greater than 50 kΩ	Pass	
From position 1 to position 2	Less than 50 kΩ	Fail	
n	Greater than 50 kΩ	Pass	
From position 1 to position 5	Less than 50 kΩ	Fail	
From position 4 to position 5	Greater than 50 k Ω	Pass	
	Less than $50 \text{ k}\Omega$	Fail	


\% NOTE: All three test functions only apply to a 4160V system. If testing a 2400V system, test only against position 1 versus 2 and 4 versus 5.

If all values are greater than 50K ohms, proceed to the SCR Gate to Cathode Test. If an SCR measures less than 50K ohms but not 0 ohms, the SCR still may be good. Contact Benshaw for further assistance. If any of the recorded values are 0 ohms then one or more of the SCRs in that phase has failed. An ohmmeter can only determine failed devices; an SCR tester is required to verify proper operation of the device.

NOTE: If at any time during this procedure it is necessary to remove any of the red and white SCR gate leads from the firing card, care must be taken to insure that these leads are reconnected to the terminal they were removed from.

8.7.3 Alternative Shorted SCR Test

This will test the anode to cathode integrity of the SCR. Measure the resistance between sets of red (cathode) leads on the right hand side of the firing card. The measured value should be greater than 50K ohms. Abnormally high or low values may indicate a failed SCR. To perform the SCR test, attach the ohmmeter to cathodes (red leads) of the SCR in the patterns shown below.

Figure 55 Meter Testing

With your ohmmeter, test each SCR cathode (red to red wire). Perform this test on SCRs labeled A-B,C-D,E-F.

Table 18

Test	Ohm Meter Reading		Value
A and B	Greater than 50 kΩ	Pass	
Pair	Less than 50 kΩ	Fail	
C and D	Greater than 50 kΩ	Pass	
Pair	Less than 50 kΩ	Fail	
E and F	Greater than 50 kΩ	Pass	
Pair	Less than $50 \text{ k}\Omega$	Fail	

₩ NOTE: The E and F test only applies to tests on 4160V systems.

If all values are greater than 50K ohms, proceed to the SCR Gate to Cathode Test. If an SCR measures less than 50K ohms but not 0 ohms then it may still be good. Contact Benshaw for further assistance. If any of the recorded values are 0 ohms then one or more of the SCRs in that phase has failed. An ohmmeter can only determine failed devices; an SCR tester is required to verify proper operation of the device.

8.7.4 Shorted SCR Found

If a shorted SCR was found during the Shorted SCR Test, all of the circuit boards and the jumper bars on the phase will need to be removed in order to test each individual SCR to find the one that has shorted. Refer to Figure 54 on page 166 and table 19 to place the ohmmeter cables.

Table 19: Ohmmeter Position for Shorted SCR

Test	Ohm Meter Reading	Results	Value
From position 1 to position 2	Greater than 50 k Ω Less than 50 k Ω	Pass Fail	
From position 2 to position 3	Greater than 50 k Ω Less than 50 k Ω	Pass Fail	
From position 1 to position 5	Greater than $50 \text{ k}\Omega$ Less than $50 \text{ k}\Omega$	Pass Fail	
From position 3 to position 5	Greater than $50 \text{ k}\Omega$ Less than $50 \text{ k}\Omega$	Pass Fail	
From position 4 to position 5	Greater than 50 k Ω Less than 50 k Ω	Pass Fail	
From position 5 to position 6	Greater than 50 k Ω Less than 50 k Ω	Pass Fail	

8.7.5 SCR Gate to Cathode Test

To perform the gate to cathode test, attach the ohmmeter to SCRs like in the picture shown below to measure the resistance between the red and white SCR gate leads.

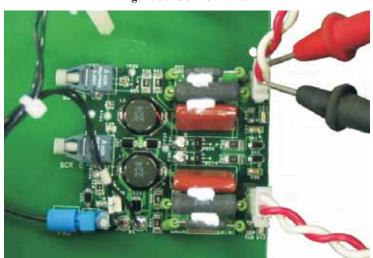


Figure 56: SCR Gate Test

Table 20: Ohmmeter Position for SCR Gate Test

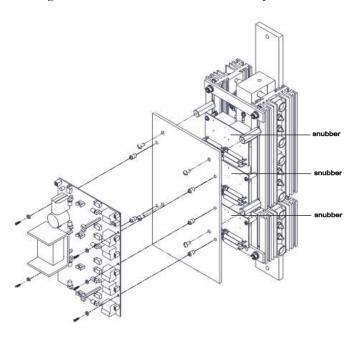
Test	Ohm Meter Reading	Results
C + 1 1 C 1 CCD	8 Ω to 50 Ω	Pass
Gate to cathode for each SCR	Less than 8 Ω or more than 50 Ω	Fail

If an SCR measures less than 8 ohms but not 0 ohms, the SCR still may be good. If any of the recorded values are 0 ohms then that SCR has failed. An ohmmeter can only determine failed devices; an SCR tester is required to verify proper operation of the device.

NOTE: If at any time during this procedure it is necessary to remove any of the red and white SCR gate leads from the firing card, care must be taken to insure that these leads are reconnected to the terminal they were removed from.

 \Re NOTE: If at any time these resistance readings are outside of the above specified values consult factory.

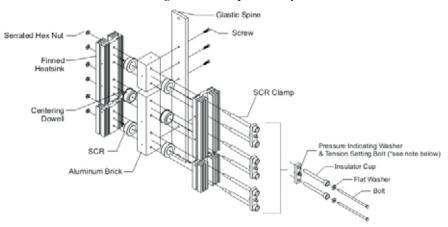
SCR Replacement


8.8 SCR Replacement

8.8.1 Card Removal

Before the SCRs can be removed, the PC boards and Lexan™ or glastic must first be removed. If unsure of any wiring connections to the card, write down location of wires on drawings.

Next, remove the snubbers (refer to Figure 57).


Figure 57: Lexan™/Glastic & Card Assembly

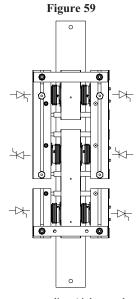
8.8.2 SCR Clamp

The SCR clamp pictured below is typical of the clamp used on all SCRs. The larger SCRs have two spring washer stacks and pressure indicating washers. These SCR clamps are precision clamps that allows easy installation to the proper SCR clamping pressure. They have a pressure indicator(s) that will become loose once the proper pressure is reached.

Figure 58: Clamp Assembly

ŹŢ.

₩ NOTE: Do not adjust pressure indicating washer.
If it is adjusted or tampered with the clamp is defective
and must be returned to factory for calibration.


ATTENTION: The Fiber Optic cables can be damaged if struck or bent sharply. The edge of the printed circuits board should be held to prevent damage. Special equipment is required for working on the fiber optic portion of the starter. Please contact Benshaw for service in this area.

8.8.3 SCR Removal

To remove the SCR from heatsink, loosen the two bolts at each end of the clamp body. The SCR has a dowel pin centering it in the heat sink so the two bolts have to be loosened enough to allow it to clear this pin. **DO NOT loosen the nut on indicator washer. This will change the clamping pressure of the clamp and the clamp will be rendered defective**.

8.8.4 SCR Installation

To install an SCR, use Benshaw approved SCR's. Coat the faces of the SCR's to be installed with a thin layer of electrical joint compound (EJC). Place the SCR's onto the dowel pins (refer to Figure 59 for proper SCR position). The SCR symbol has a triangle that points to the cathode. Assemble the insulator cups, washers and bolts as shown in the clamp diagram. Finger tighten the bolts until they are snug, ensuring that the bolts are evenly tightened and the clamp body is parallel to the heat sink. Tighten each bolt in 1/8 turn increments until the pressure indicator(s) can be turned on the bolt. This ensures the proper clamping pressure on the SCR.

% NOTE: For clamps with two washer stacks, it may be necessary to adjust (tighten or loosen) one or both bolts, until both indicators are even, allowing both washers to spin.

8.8.5 Re-Test SCR's

Once the SCR's have been replaced, perform another SCR Test Procedure.

8.8.6 Re-Assemble Unit

When the SCR readings are correct, re-install the PC boards, RC snubber, and Lexan TM or glastic. Make certain that all wiring is done correctly, and re-install the phase in the unit it was taken from.

Built-In Self Test (BIST)

8.9 Built-In Self Test (BIST)

8.9.1 General Information

The MVRMX³ starter has the capability to perform a test sequence to ensure it is operating properly. The test will operate the vacuum contactors and fire the SCR gates so that proper operation can be determined.

The standard BIST tests are designed to be run with no line voltage applied to the starter. When a disconnect switch is used, the disconnect switch must be opened before starting the standard tests. Standard BIST mode can be entered by entering the appropriate value into the Miscellaneous Command user parameter.

CAUTION: In order to prevent backfeeding of voltage through the control power transformer (if used), control power must be carefully applied to the MX³ control card and contactors so that self testing can occur safely. The user must verify that the applied test control power cannot be fed backwards through the system. "Run/Test" isolation switches, test power plugs, and wiring diagrams are available from Benshaw.

CAUTION: Verify that line voltage is not applied to the line side of the inline contactor before the test is performed. Otherwise the inline test will apply line voltage to the starter and a BIST test fault will occur.

CAUTION: Before starting the Built-In Self Test, ensure that the disconnect is open. This test should not be performed until it has been verified that all three phases of the disconnect are open and the disconnect is locked out.

8.9.2 Test Setup

To perform the BIST, open the control panel door to connect 120VAC to the test plug. Move the Normal/Test switch to the Test Position and verify that the 120VAC control power is present.

Figure 60: Normal/Test Switch

Open the medium voltage door and verify the operation of six different LEDs on each of the three gate driver cards. The Power LED (RED / LED 1) which is behind the red glastic holding the transformer must be verified. The 12 volt healthy LED (GREEN / LED 2) for the fiber optic cable on each of the fiber optic boards must also be illuminated in the upper left corner. The separate gate power LEDs (GREEN / LED 3, 4, 5, 6) along the middle of the board must be illuminated for verification of power to the gates.

8.9.3 BIST Notes

The display will indicate step by step the activity of the BIST operation throughout the test.

To skip or move to the next activity of the BIST before the predetermined time has elapsed, press the [ENTER] button until the desired activity is present on the display screen.

The normal length of a BIST is 285 seconds. At the completion of the test, the display will briefly read the display below and then return to the home screen.

BIST Mode Tests completed **% NOTE:** If the power LED1 (RED) does not light up (behind the transformer), check and verify the 28 VAC Transformer. If the transformer is functional then the gate driver card that does not have all of its SCR indicator lights operating has failed.

Figure 61: Fiber Optic Driver Card Location (BIPC-300047-01)

8.9.4 Conducting a BIST

To conduct a **BIST Test**, follow these steps:

- Press the [MENU] button six times to scroll to th FUN group.
- Press the [DOWN] button five times to get to FUN 22.
- Press the [ENTER] button.
- Press the [UP] button seven times to set parameter to "Std BIST".
- Press the [ENTER] button to begin the BIST test.

FUN:Misc Command 22 Std BIST

8.9.5 Begin BIST Test

Once started, the MVRMX³ will log an event log 193 - "Std BIST Enter" in the event recorder and check the state of the disconnect switch. If the disconnect switch is closed, the MVRMX³ will display:

Open disconnect to begin BIST

8.9.6 RUN relay and In-line Test

The MVRMX 3 will begin the test sequence by operating the in-line contactor and monitoring the 120VAC feedback for proper operation. The RUN assigned relays are cycled on and off once and the feedback from an inline contactor is verified. In order to have a valid inline contactor feedback, a digital input (I/O 01 – 08) needs to be set to "Inline Confirm" and the input needs to be wired to an auxiliary contact of the inline contactor. The feedback is checked in both the open and closed state. If the feedback does not match the state of the RUN relay within the amount of time set by the Inline Config (I/O 24) parameter an "Inline" fault (Fault #49) will occur.

₩ NOTE: If no digital input is assigned as an Inline Confirm input this test will always pass.

ૠ NOTE: If the Inline Config (I/O 24) parameter on page 96 is set to "Off" this test will be skipped. During the in-line contactor test, the MVRMX³ will display the following:

BIST Mode Inline Closed

BIST Mode Inline Open

8.9.7 UTS relay and Bypass Test

In this test, the dedicated bypass relay (if assigned) and UTS assigned relays are cycled on and off once and the feedback from a bypass contactor is verified. In order to have a valid bypass contactor feedback, the dedicated bypass confirm input and any other inputs set to bypass confirm needs to be wired to an auxiliary contact of the bypass contactor. The feedback is checked in both the open and closed state. If the feedback does not match the state of the UTS relay within the amount of time set by the Bypass Feedback (I/O 25) parameter a "Bypass/2M Fault" (Fault #48) will occur.

₩ NOTE: If the dedicated bypass relay is set to "fan" and if no digital inputs are assigned as a Bypass Confirm input this test will always pass.

BIST Mode Bypass Closed

BIST Mode Bypass Open

8.9.8 Sequential SCR Gate Firing

The SCR gate outputs are fired sequentially in this test. This test is used to verify that the fiber optic gate driver cards are properly connected and functional. The gate output LEDs must be monitored during this test to verify proper operation.

When the MX³ is performing this test it will display the following;

BIST Mode Gate G? On

This display will indicate a gate number from 1 to 6 in the order G6, G3, G5, G2, G4 and G1. The medium voltage starter uses series SCR strings instead of a single SCR so each gate number indicates a series SCR string being fired in sequence. The firing pattern is shown in the table below. Ensure that the starter steps through this sequence triggering the SCRs in the order shown below.

Step **Gates Fired Display** 1 G6 Phase 1 - B, D, F 2 G3 Phase 1 - A, C, E 3 G5 Phase 2 - B, D, F 4 G2 Phase 2 - A, C, E 5 G4 Phase 3 - B, D, F 6 G1 Phase 3 - A, C, E

Table 21: Gate Firing Sequence

Watch the sequence of the gate LEDs while this test is operating. If the SCR gates are fired out of sequence than check the fiber optics for improper installation.

Press [ENTER] pushbutton to move to the next BIST step.

\mathbb{H} NOTE: The gate firing sequence shown above is a three phase pattern illustrating the firing procedure of a 4160V system. If operating a 2400V system the sequence will not include the gate testing of the E and F positions.

₩ NOTE: If the SCR gate indicators do not light in the proper sequence during this test then consult Benshaw. Do not attempt to operate the starter as SCR damage will occur.

8.9.9 All SCR Gates Firing

The SCR gate outputs are all fired in this test. This test allows easy measurement of the gate voltages. The gate voltages can be measured with a DC voltage meter or with an oscilloscope. The voltages should be between 0.5VDC and 2VDC when measured with a DC voltage meter. Connect the positive lead to the white gate wire and the negative lead to the red gate wire to measure the gate waveform with an oscilloscope. Use 2 volts per division and a 2 millisecond time scale. See the figure below for a sample voltage measurement using an oscilloscope.

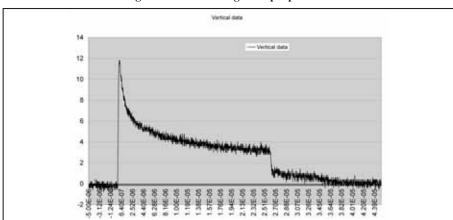


Figure 62: Gate voltage of a proper SCR

8 - TROUBLESHOOTING & MAINTENANCE

During this test the display will show the following.

BIST Mode All gates on

Press [ENTER] pushbutton to complete BIST procedure.

₩ NOTE: If the LED gate indicators (RED / LED 7, 8, 9, 10, 11, 12) do not all light during this test then consult Benshaw. Do not attempt to operate the starter as SCR damage will occur.

8.9.10 Resetting System

After the completion of the BIST Test the MVRMX³ registers an event #195 -" BIST Passed" in the event recorder and automatically resets the system.

8.9.11 BIST Test Cancelled

If, for any reason during the test, the disconnect is closed, power is applied, or the BIST command is removed, the MVRMX³ will stop the test and log the fault number and name of event that caused the BIST to be cancelled.

Fault # Fault Description

High Pot Test

8.10 High Pot Testing

Consult Factory

Vacuum Contactor

8.11 Vacuum Contactor

Consult manual for vacuum contactor.

See also page 176 for more information.

Optional RTD Module Troubleshooting

8.12 RTD Module Troubleshooting

If the system includes optional RTD Modules, verify that all three LED indicator lights on the remote RTD units are toggling. There is a TX (Red) & RX (Green) that will flash when the module is communicating and a Status (Green) light that blinks once per second. The RTD module connects to the top of the MX^3 I/O card. There should be a Red TX and Green RX blinking in the J1 connection where the two devices connect.

NOTE: For more details see Remote RTD Module Manual Pub. # 890010-00-X.

Figure 63: RTD Module (SPR-100P)

Remote RTD Module SPR-100P	TX (Red)	Transmit Data	Flashes when module is transmitting data.
	RX (Green)	Receive Data	Flashes when module is receiving data.
	Status (Green)	Operation	On when module measures RTD.

Maintenance

8.13 VACUUM contactor and Power Pole assembly Maintenance

General:

During the life of the MVRMX³, it may be necessary to perform routine maintenance on the unit. The following sections describe how to change a VACUUM contactor and power pole assembly.

Attention:

Servicing energized equipment can be hazardous. Sever injury or death may result from electrical shock or burn due to improper use of the equipment. It is recommended that the equipment is disconnected and a lock out command is enacted prior to any maintenance that is performed. Remember to allow any stored energy in the capacitors to dissipate. If it is necessary to work in the vicinity of energized as well as de-energized equipment, the work practices of NFPA 70E, Electrical Safety Requirements for Employee Workplace, must be followed.

Periodical Inspection:

Benshaw controls require only periodical inspections. These inspections can be visual for physical traces of dust, dirt or visible damage. Circuit boards should be physically tested to ensure that all the cables are connected properly.

Remember cleaning solvents should not come in contact with circuit or PC boards.

If filters or blowers are used, they should be cleaned or replaced as specified in the NEMA Standards Publication No. ICS 1.1 - 1987

Static:

While performing maintenance on the MVRMX³, certain preventative measures must be taken when handling or touching static sensitive components in the enclosure.

Most circuit boards and SCRs can be damaged by Electro-Static Discharge (ESD). If persons make contact with an ESD sensitive component during maintenance, they must be grounded. Grounding should be accomplished with a wrist strap which is connected to an approved ground.

ATTENTION:

Using other than factory recommended test equipment and instructions on the controls may result in personal injury and damage or failure of equipment.

Maintenance Records:

Keeping good maintenance records will be helpful in locating possible intermittent problems by pointing to a particular area of recurring trouble within the system.

Vacuum Contactor:

To remove either of the contactors, perform the following steps:

- Ensure that the main disconnect is open and the grounding blades are seated.
- Disconnect all power wire going to the VACUUM contactor poles.
- If necessary, remove the gray cover on the bottom of the contactor.
- Remove the control wires from the contactor.
- · Undo the four mounting bolts and remove the contactor.

Replacement of the contactor is the reverse of the removal. Test the contactor before installing to ensure proper operation. A contactor manual is provided with each starter and should be referred to when disassembling and reassembling the contactor. If required contact Benshaw for a manual.

Vacuum Bottles:

The contacts in a vacuum bottle can not be seen or examined directly. They rely on a vacuum to operate properly and to interrupt current. Wear indicators must not be in the red zone when the contacts initially touch. Operate the contactor manually with a hex wrench to perform this test. Consult contactor manufacturers instruction manual included with the starter for addition maintenance requirements.

\(\pi\)NOTE: High pot testing of vacuum bottles creates radiation. Personnel should be no closer than 10 feet and behind a metal barrier. Keep test times to a minimum.

Power Pole:

To remove a SCR power pole, perform the follow steps:

- · Ensure that the main disconnect is open and the grounding blades are seated.
- Disconnect all power and control wiring going to the phase.
- Remove the two nuts, one top and one bottom, holding the phase in place.
- Carefully lift the phase from the enclosure, using caution to avoid damage to the control wiring.
- Once removed, contact Benshaw to have the phase serviced or exchanged.

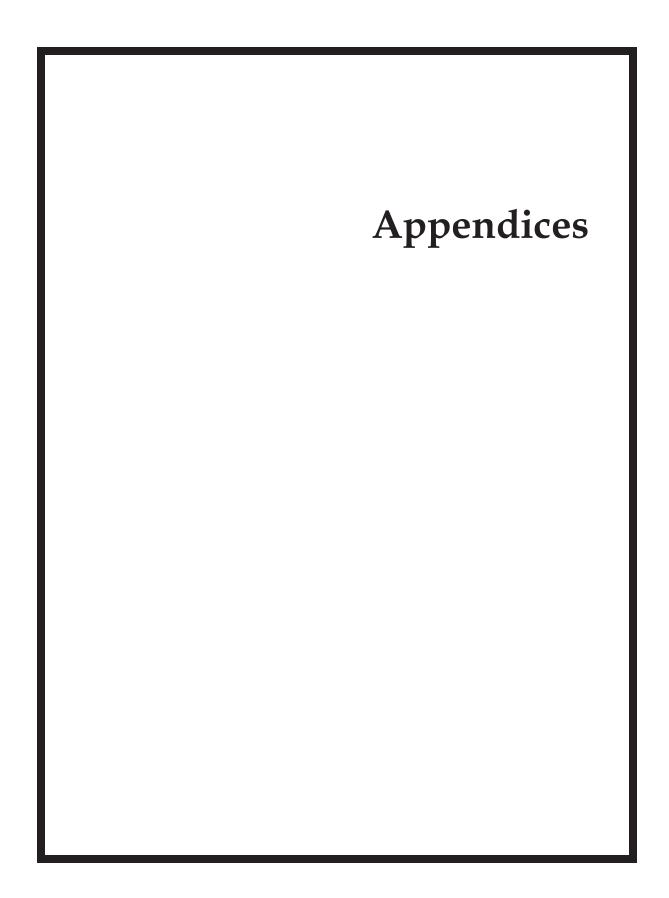
The installation of the power pole is the opposite of the removal process. The bypass contactor in the package is horsepower rated and can be used to operate the motor while the power pole is being serviced. If this is the case, ensure that the power wire for the removed phase is completely removed from the unit and that the control wiring is isolated and will not come into contact with any medium voltage to prevent damage to the starter.

Fans:

Physically testing the fans by rotating and observing the fans for noise or binding will indicate if any failure is evident.

Interlocks:

Verify that interlocks functions as intended, and have not been forced, damaged or removed.


Barriers:

Verify that all barriers are in place and securely fastened.

Disconnect Switch:

Perform a visual inspection for evidence of damage such as overheating, and do a tightness check. Consult disconnect switch manufacturers instruction manual included with the starter for addition maintenance requirements.

NOTES:

APPENDIX A - EVENT CODES

Event Codes

** Event Number 1 through 99 - See starter fault listing for description of faults. The event log will only indicate that a fault of a given fault code occurred and a time stamp when it occurred.

Event Number	Event	Event Number	Event
1 through 99 **	Starter Faults	170	PORT Entered due to low voltage
		171	PORT Entered due to low current
101	Start Commanded	172	PORT Bypass contactor opened
102	Slow Speed Commanded	173	PORT Power returned
103	System UTS	174	PORT Recovery complete
104	Energy Saver Entered		
105	Energy Saver Exited	180	Parameter Defaults Loaded
106	System Stop Commanded	181	Time Set / Changed
107	System Stop Complete	182	User Passcode Enabled
		183	User Passcode Disabled
110	Motor OL Warning	184	Factory Control Password Accessed
111	Motor OL Lockout Activated	185	Event Log Cleared
112	Motor OL Lockout Expired	186	User Run Time Reset
113	Stack OL Warning	187	User KWh meters Reset
114	Stack OL Lockout Activated	188	Reflash Mode Entered
115	Stack OL Lockout Expired	190	System Powered Up
116	Emergency OL Reset Performed	191	System Powered Down
117	RTD Stator Warning	192	Low Control Power Detected when Stopped
118	RTD Bearing Warning	193	Standard BIST Entered
119	RTD Other Warning	194	Powered BIST Entered
		195	BIST Passed
140	Disconnect Opened		
141	Disconnect Closed		

Alarm Codes

The following is a list of all MX^3 alarm codes. The alarm codes correspond to associate fault codes. In general, an alarm indicates a condition that if continued, will result in the associated fault.

Alarm Code	Description	Notes
A02	Motor Overload Alarm	This occurs when the motor thermal content reaches the Motor OL Alarm Level (PFN33). The MX³ trips when it reaches 100%. The alarm continues until the overload trip lockout is reset.
A05	Motor PTC Alarm	This occurs when the Motor PTC thermistor input indicates that the motor is overheated but before the fault trip time has expired.
A06	Stator RTD Alarm	This occurs when a RTD assigned to the Stator group reaches its alarm level.
A07	Bearing RTD Alarm	This occurs when a RTD assigned to the Bearing group reaches its alarm level.
A08	Other RTD Alarm	This occurs when a RTD assigned to the other group reaches its alarm level.
A10	Phase Rotation not ABC	This alarm exists while the MX ³ is stopped, line voltage is detected and phase sensitivity parameter is set to ABC. If a start is commanded, a Fault 10 occurs.
A11	Phase Rotation not CBA	This alarm exists while the MX ³ is stopped, line voltage is detected and phase sensitivity parameter is set to CBA. If a start is commanded, a Fault 11 occurs.
A12	Low Line Frequency	This alarm exists when the MX ³ has detected a line frequency below the user defined low line frequency level. The alarm continues until either the line frequency changes to be in range or the fault delay timer expires.
A13	High Line Frequency	This alarm exists when the MX³ has detected a line frequency above the user defined high line frequency level. The alarm continues until either the line frequency changes to a valid frequency or the fault delay timer expires.
A14	Input power not single phase	This alarm exists while the MX ³ is stopped, set to single phase mode, and line voltage is detected that is not single phase. If a start is commanded, a Fault 14 occurs.
A15	Input power not three phase	This alarm exists while the MX ³ is stopped, set to a three-phase mode, and single-phase line voltage is detected. If a start is commanded, a Fault 15 occurs.
A21	Low Line L1-L2	This alarm exists while the MX ³ is stopped and low line voltage is detected. If a start is commanded, a Fault 21 may occur.
A22	Low Line L2-L3	This alarm exists while the MX ³ is stopped and low line voltage is detected. If a start is commanded, a Fault 22 may occur.
A23	Low Line L3-L1	This alarm exists while the MX ³ is stopped and low line voltage is detected. If a start is commanded, a Fault 23 may occur.
A24	High Line L1-L2	This alarm exists while the MX ³ is stopped and high line voltage is detected. If a start is commanded, a Fault 24 may occur.
A25	High Line L2-L3	This alarm exists while the MX ³ is stopped and high line voltage is detected. If a start is commanded, a Fault 25 may occur.
A26	High Line L3-L1	This alarm exists while the MX ³ is stopped and high line voltage is detected. If a start is commanded, a Fault 26 may occur.
A27	Phase Loss	This alarm exists while the MX ³ is running and a phase loss condition is detected, but the delay for the fault has not yet expired. When the delay expires, a Fault 27 occurs.
A28	No Line	This alarm exists while the MX ³ needs to be synchronized or is trying to sync to the line and no line is detected.

Alarm Code	Description	Notes
A29	P.O.R.T. Timeout	This alarm exists while the MX ³ is in Power Outage Ride Through mode and it is waiting for line power to return. When the PORT fault delay expires a Fault 29 shall occur.
A31	Over current	This alarm exists while the MX ³ is running and the average current is above the defined threshold, but the delay for the fault has not yet expired. When the delay expires, a Fault 31 occurs.
A34	Undercurrent	This alarm exists while the MX ³ is running and the average current is below the defined threshold, but the delay for the fault has not yet expired. When the delay expires, a Fault 34 occurs.
A35	Power Factor Leading	This alarm exists while the MX ³ is running and the measured PF is leading the defined threshold, but the delay for the fault has not yet expired. When the delay expires, a Fault 35 occurs.
A36	Power Factor Lagging	This alarm exists while the MX ³ is running and the measured PF is lagging the defined threshold, but the delay for the fault has not yet expired. When the delay expires, a Fault 36 occurs.
A37	Current Imbalance	This alarm exists while the MX ³ is running and a current imbalance above the defined threshold is detected, but the delay for the fault has not yet expired. When the delay expires, a Fault 37 occurs.
A38	Ground Fault	This alarm exists while the MX ³ is running and a ground current above the defined threshold is detected, but the delay for the fault has not yet expired. When the delay expires, a Fault 38 occurs.
A47	Stack Overload Alarm	This occurs when the stack thermal rises above 105%.
A53	Tachometer Signal Loss	This occurs when a non-valid or tachometer input signal is detected. The alarm shall exist until a valid tachometer feedback signal is detected or the fault delay timer has expired. When the delay expires, a Fault 53 shall occur.
A60	External Alarm on DI 1 Input	This alarm shall exist if DI 1 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 60 shall occur.
A61	External Alarm on DI 2 Input	This alarm shall exist if DI 2 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 61 shall occur.
A62	External Alarm on DI 3 Input	This alarm shall exist if DI 3 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 62 shall occur.
A63	External Alarm on DI 4 Input	This alarm shall exist if DI 4 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 63 shall occur.
A64	External Alarm on DI 5 Input	This alarm shall exist if DI 5 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 64 shall occur.
A65	External Alarm on DI 6 Input	This alarm shall exist if DI 6 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 65 shall occur.
A66	External Alarm on DI 7 Input	This alarm shall exist if DI 7 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 66 shall occur.
A67	External Alarm on DI 8 Input	This alarm shall exist if DI 8 is programmed as a fault, is in the fault state, but the fault timer has not yet expired. When the timer expires a Fault 67 shall occur.
A71	Analog Input Level Trip Alarm	This alarm exists if the analog input exceeds the defined threshold, but the delay for the fault has not yet expired. When the delay expires, a Fault 71 occurs.

Fault Codes

Fault Code	Description	Controlled Fault Stop	Shunt Trip Fault	Auto-Reset Allowed
F00	No fault	-	-	-
F01	UTS Time Limit Expired	Y	N	Y
F02	Motor Thermal Overload Trip	Y	N	Y
F03	Slow Speed Time Limit Expired	N	N	N
F04	Speed Switch Time Limit Expired	Y	N	Y
F05	Motor PTC Overtemperature	Y	N	Y
F06	Stator RTD Overtemperature	Y	N	Y
F07	Bearing RTD Overtemperature	Y	N	Y
F08	Other RTD Overtemperature	Y	N	Y
F10	Phase Rotation Error, not ABC	N	N	Y
F11	Phase Rotation Error, not CBA	N	N	Y
F12	Low Line Frequency	N	N	Y
F13	High Line Frequency	N	N	Y
F14	Input power not single phase	N	N	Y
F15	Input power not three phase	N	N	Y
F21	Low Line L1-L2	Y	N	Y
F22	Low Line L2-L3	Y	N	Y
F23	Low Line L3-L1	Y	N	Y
F24	High Line L1-L2	Y	N	Y
F25	High Line L2-L3	Y	N	Y
F26	High Line L3-L1	Y	N	Y
F27	Phase Loss	N	N	Y
F28	No Line	N	N	Y
F29	PORT Timeout	N	N	Y
F30	Instantaneous over current (I.O.C.)	N	Y	N
F31	Overcurrent	Y	N	Y
F34	Undercurrent	Y	N	Y
F35	Power Factor Leading	Y	N	Y
F36	Power Factor Lagging	Y	N	Y
F37	Current Imbalance	Y	N	Y
F38	Ground Fault	N	Y	Y
F39	No Current at Run	N	N	Y
F40	Shorted / Open SCR	N	Y	N
F41	Current at Stop	N	Y	N
F46	Disconnect Fault	N	Y	N
F47	Stack Overtemperature / P.S Failure	N	N	Y
F48	Bypass/2M Contactor Fault	Y	N	N
F49	Inline Contactor Fault	Y	N	N
F50	Control Power Low	N	N	Y
F51	Current Sensor Offset Error	N	Y	N
F53	Tachometer Signal Loss	Y	N	N
F54	BIST Fault	N	N	N
F55	BIST CT Fault	N	N	N
F56	RTD Open or Shorted	Y	N	N
F60	External Fault on DI 1 Input	N	N	Y
F61	External Fault on DI 2 Input	N	N	Y
F62	External Fault on DI 3 Input	N	N	Y
F63	External Fault on DI 4 Input	Y	N	Y

APPENDIX C - FAULT CODES

Fault Code	Description	Controlled Fault Stop	Shunt Trip Fault	Auto-Reset Allowed
F64	External Fault on DI 5 Input	Y	N	Y
F65	External Fault on DI 6 Input	Y	N	Y
F66	External Fault on DI 7 Input	Y	N	Y
F67	External Fault on DI 8 Input	Y	N	Y
F71	Analog Input #1 Level Fault Trip	Y	N	Y
F80	RTD Module Communication Fault	Y	N	N
F81	Keypad Communication Fault	Y	N	N
F82	Modbus Timeout Fault	Y	N	Y
F84	MX to I/O Card Communication Fault	N	N	N
F85	I/O Card Software version Fault	N	N	N
F86	I/O Card Current Offset Error	N	N	N
F87	I/O Card Error	N	N	N
F88	I/O Card Error	N	N	N
F89	I/O Card Software Watchdog	N	N	N
F90	I/O Card Error	N	N	N
F91	I/O Card Program EPROM Checksum Fault	N	N	N
F94	CPU Error – Software fault	N	N	N
F95	CPU Error – Parameter EEPROM Checksum Fault	N	N	N
F96	CPU Error	N	Y	N
F97	CPU Error - Software Watchdog	N	Y	N
F98	CPU Error	N	N	N
F99	CPU Error – Program EPROM Checksum Fault	N	N	N

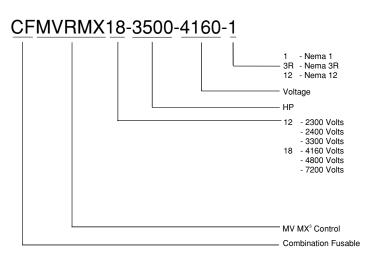
Options and Accessories

	Description	Part Number	Size
1)	LCD Display (small)	KPMX3SLCD	H=63mm(2.48"), W=101mm(4")
2)	LCD Display (large)	KPMX3LLCD	H=77mm(3.03"), W=127mm(5")
3)	LCD display cable	RI-100008-00 RI-100009-00	3' or 1meter 6' or 2 meter
4)	Remote RTD Module	SPR-100P	
5)	Zero Sequence Ground Fault CT	CT-2000/1-6 (CT100001-01)	
6)	Communication Modules	consult factory	

Spare Parts

	Description	Part Number	Size	Quantity
1)	LCD Display - small	KPMX3SLCD	H=63mm(2.48"), W=101mm(4")	
2)	LCD Display - large	KPMX3LLCD	H=77mm(3.03"), W=127mm(5")	
3)	LCD display cable	short = BIRI-100008-00 long = BIRI-100009-00	3' or 1meter 6' or 2meter	
4)	Cooling Fans		4" - 6"	
5)	Current Transformers (CTs)	CT-100001-01 CT-100003-01 CT-100005-01 CT-100011-01 CT-100024-01 CT-100034-01 CT-100108-01	Ground Fault, 2000:1 150:5 250:5 800:5 50:5 2000:5 5000:5	
6)	Zero Sequence Current Transformer	CT-2000/1-6 (CT100001-01)		
7)	MX ³ Assembly	PC-450100-01-01		
8)	DV/DT Board	PC-300048-01-02		3
9)	Gate Drive Board	300047-01 rev 13		3
10)	Medium Voltage Fuses	R-rated	Consult Factory	3
11)	MV Stack -Power Pole -SCRs -DV/DT -Fiber Optic	S-450100-00 S-450101-00 S-450102-00 S-450103-00 S-450104-00 S-450105-00 S-450106-00	208A, 2.3KV 208A, 5KV 415A, 2.3KV 415A, 5KV 600A, 2.3KV 600A, 5KV 144A, 6.6KV	
12)	Voltage Transformer		Consult Factory	
13)	Control Power Transformers		Consult Factory	
14)	SCRs	Consult Factory		
15)	Divider Card	100032-01		

APPENDIX E - EU DECLARATION OF CONFORMITY


EU Declaration of Conformity

According to the EMC - Directive 89/336/EEC as Amended by 92/31/EEC and 93/68/EEC

Product Category: Motor Controller

Product Type: Reduced Voltage Solid State Motor Controller

Model Number:

Example of Model Number: CFMVRMX18-3500-4160-1

A Combination Fusable RediStart starter with MV MX^a control, 4160 Volts, 3500 Horse Power, NEMA 1 Enclosure.

Manufacturer's Name: Benshaw, Inc.

659 East Sutter Road Manufacturer's Address:

> Glenshaw, PA 15116 United States of America

The before mentioned products comply with the following EU directives and Standards:

UL 347 Standard for Motor Controllers over 1500V devices for starting, stopping, regulating, controlling, or Safety:

protecting electric motors with ratings of 1.5KV to 7.2KV.

Electromagnetic Compatibility: EN 61000-6-4:2001 Emissions Radiated/Conducted

EN 55011/05.98+A1:1999

EN 61000-6-2:2001 Immunity/Susceptibility which includes:

EN 61000-4-2 Electrostatic Discharge

EN 61000-4-3 Radiated RF

EN 61000-4-4 Electrical Fast Transient/Burst

EN 61000-4-5 Surge

EN 61000-4-6 Injected Currents EN 61000-4-8 Magnetic EN 61000-4-11 Voltage Dips

The products referenced above are for the use of control of the speed of AC motors. The use in residential and commercial premises (Class B) requires an optional EMC series filter. Via internal mechanisms and Quality Control, it is verified that these products conform to the requirements of the Directive and applicable standards.

Glenshaw, PA USA - 1 October 2003

Neil Abrams Quality Control Manager

Modbus Register Map

Following is the Modbus Register Map. Note that all information may be accessed either through the Input registers (30000 addresses) or through the Holding registers (40000 addresses).

Absolute Register Address	Description	Range	Units
30020/40020	Starter Control	Bit Mask: Bit 0: Run/Stop Bit 1: Fault Reset Bit 2: Emergency Overload Reset Bit 3: Local/Remote Bit 4: Heat Disable Bit 5: Ramp Select Bit 10: Relay 6 Bit 11: Relay 5 Bit 12: Relay 4 Bit 13: Relay 4 Bit 13: Relay 3 Bit 14: Relay 2 Bit 15: Relay 1	-
30021/40021	Starter Status	Bit Mask: Bit 0: Ready Bit 1: Running Bit 2: UTS Bit 3: Alarm Bit 4: Fault Bit 5: Lockout	-
30022/40022	Input Status	Bit Mask: Bit 0: Start Bit 1: DI 1 Bit 2: DI 2 Bit 3: DI 3 Bit 4: DI 4 Bit 5: DI 5 Bit 6: DI 6 Bit 7: DI 7 Bit 8: DI 8	-
30023/40023	Alarm Status 1	Bit Mask: Bit 0: "A OL" – Motor overload Bit 1: "A 5" – Motor PTC Bit 2: "A 6" – Stator RTD Bit 3: "A 7" – Bearing RTD Bit 4: "A 8" – Other RTD Bit 5: "A 10" – Phase rotation not ABC Bit 6: "A 11" – Phase rotation not CBA Bit 7: "A 12" – Low Line Frequency Bit 8: "A 13" – High Line Frequency Bit 9: "A 14" – Phase rotation not 1PH Bit 10: "A 15" – Phase rotation not 3PH Bit 11: "A 21" – Low line L1-L2 Bit 12: "A 22" – Low line L2-L3 Bit 13: "A 23" – Low line L3-L1 Bit 14: "A 24" – High line L3-L1 Bit 14: "A 24" – High line L1-L2 Bit 15: "A 25" – High line L2-L3	_
30024/40024	Alarm Status 2	Bit 0: "A 26" – High line L3-L1 Bit 1: "A 27" – Phase loss Bit 2: "noL" – No line Bit 3: "A 29" – PORT Timeout Bit 4: "A 31" – Overcurrent Bit 5: "A 34" – Undercurrent Bit 6: "A 35" – PF Too Leading Bit 7: "A 36" – PF Too Lagging Bit 8: "A 37" – Current imbalance Bit 9: "A 38" – Ground fault Bit 10: "A 47" – Stack overtemperature Bit 11: "A 53" – Tach Loss Bit 12: "A 60" – DI 1 Bit 13: "A 61" – DI 2 Bit 14: "A 62" – DI 3 Bit 15: "A 63" – DI 4	-

Absolute Register Address	Description	Range	Units
30025/40025	Alarm Status 3	Bit 0: "A 64" – DI 5 Bit 1: "A 65" – DI 6 Bit 2: "A 66" – DI 7 Bit 3: "A 67" – DI 8 Bit 4: "A 71" – Analog Input Trip	_
30026/40026	Lockout Status	Bit 0: Motor overload Bit 1: Motor PTC Bit 2: RTD Stator Bit 3: RTD Bearing Bit 4: RTD Other Bit 5: Disconnect open Bit 6: Stack overtemperature Bit 7: Control power Bit 8: RTD Open/Short Bit 9: Time between starts Bit 10: Backspin Bit 11: Starts per hour Bit 12: RTD Comm Loss	-
30027/40027	Present Fault Code		
30028/40028	Average Current		A_{rms}
30029/40029	L1 Current		A _{rms}
30030/40030	L2 Current		A_{rms}
30031/40031	L3 Current		A _{rms}
30032/40032	Current Imbalance		0.1 %
30033/40033	Residual Ground Fault Current		% FLA
30034/40034	Zero Sequence Ground Fault Current		0.1 Arms
30035/40035	Average Voltage		V_{rms}
30036/40036	L1-L2 Voltage		V_{rms}
30037/40037	L2-L3 Voltage		V_{rms}
30038/40038	L3-L1 Voltage		V_{rms}
30039/40039	Motor Overload		%
30040/40040	Power Factor	-99 to +100 (in 16-bit two's compliment signed format)	0.01
30041/40041	Watts (lower 16 bits)	(in 32-bit unsigned integer format)	W
30042/40042	Watts (upper 16 bits)	(iii 32-bit unsigned integer format)	, vv
30043/40043	VA (lower 16 bits)	(in 32-bit unsigned integer format)	VA
30044/40044	VA (upper 16 bits)	(iii 32-bit unsigned integer format)	VA
30045/40045	vars (lower 16 bits)	(in 32-bit two's compliment signed integer	var
30046/40046	vars (upper 16 bits)	format)	vui
30047/40047	kW hours (lower 16 bits)	(in 32-bit unsigned integer format)	kWh
30048/40048	kW hours (upper16 bits)		
30049/40049	Phase Order	0: no line 1: ABC 2: CBA 3: SPH	_
30050/40050	Line Frequency	230 – 720, or 0 if no line	0.1 Hz
30051/40051	Analog Input %	-1000 to +1000 (in 16-bit two's compliment signed format)	0.1 %
30052/40052	Analog Output %	0 – 1000	0.1 %
30053/40053	Running Time		hours
		0 – 65535	
30054/40054	Running Time	0 – 59	minutes
30055/40055	Starts		-
30056/40056	TruTorque %		%
30057/40057	Power %		%

Absolute Register Address	Description	Range	Units
30058/40058	Peak Starting Current		A _{rms}
30059/40059	Last Starting Duration		0.1 Sec
30060/40060	Hottest Stator RTD Temperature	0 - 200	°C
30061/40061	Hottest Bearing RTD Temperature	0 - 200	°C
30062/40062	Hottest Other RTD Temperature	0 - 200	°C
30063/40063	RTD 1 Temperature	0 - 200	°C
30064/40064	RTD 2 Temperature	0 - 200	°C
30065/30065	RTD 3 Temperature	0 - 200	°C
30066/40066	RTD 4 Temperature	0 - 200	°C
30067/40067	RTD 5 Temperature	0 - 200	°C
30068/40068	RTD 6 Temperature	0 - 200	°C
30069/40069	RTD 7 Temperature	0 - 200	°C
30070/40070	RTD 8 Temperature	0 - 200	°C
30071/40071	RTD 9 Temperature	0 - 200	°C
30072/40072	RTD 10 Temperature	0 - 200	°C
30073/40073	RTD 11 Temperature	0 - 200	°C
30074/40074	RTD 12 Temperature	0 - 200	°C
30075/40075	RTD 13 Temperature	0 - 200	°C
30076/40076	RTD 14 Temperature	0 - 200	°C
30077/40077	RTD 15 Temperature	0 - 200	°C
30078/40078	RTD 16 Temperature	0 - 200	°C
30079/40079	RTDs Enabled	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD is enabled. Bit 0 represents RTD 1. Bit 15 represents RTD 16.	-
30080/40080	RTDs Assigned as Stator	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD is assigned to the stator group.	-
30081/40081	RTDs Assigned as Bearing	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD is assigned to the bearing group.	-
30082/40082	RTDs Assigned as Other	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD is assigned to the other group.	-
30083/40083	RTDs with Open Leads	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD has an open lead.	_
30084/40084	RTDs with Shorted Leads	Bit Mask: Each of the sixteen (16) bits represents an RTD. A 1 indicates the RTD has shorted leads.	-
30085/40085	Remaining Lockout Time		Sec
30086/40086	Date/Time (lower 16 bits)	(in 32-bit unsigned integer format)	Sec
30087/40087	Date/Time (upper 16 bits)		
30101/40101	Motor FLA	1 – 6400	A _{rms}
30102/40102	Motor Service Factor	100 – 199	0.01
30103/40103	Independent Start/Run Motor Overloads	0: Disabled 1: Enabled	_
30104/40104	Motor Overload Running Enable	0: Disabled 1: Enabled	_

Absolute Register Address	Description	Range	Units
30105/40105	Motor Overload Running Class	1 - 40	_
30106/40106	Motor Overload Starting Enable	0: Disabled 1: Enabled	-
30107/40107	Motor Overload Starting Class	1 – 40	_
30108/40108	Motor Overload Hot/Cold Ratio	0 – 99	%
30109/40109	Motor Overload Cooling Time	10 – 9999	0.1 Min
30110/40110	Local Source	0: Keypad	
30111/40111	Remote Source	1: Terminal 2: Serial	_
30112/40112	Start Mode	0: Open Loop Voltage Ramp 1: Closed Loop Current Ramp 2: TruTorque Ramp 3: Power Ramp 4: Tach Ramp	-
30113/40113	Initial Motor Current 1	50 – 600	% FLA
30114/40114	Maximum Motor Current 1	100 – 800	% FLA
30115/40115	Ramp Time 1	0 – 300	Sec
30116/40116	Initial Motor Current 2	50 - 600	% FLA
30117/40117	Maximum Motor Current 2	100 – 800	% FLA
30118/40118	Ramp Time 2	0 – 300	Sec
30119/40119	UTS Time	1 – 900	Sec
30120/40120	Initial V/T/P	1 - 100	%
30121/40121	Max T/P	10 – 325	%
30122/40122	Stop Mode	0: Coast 1: Voltage Decel 2: TruTorqu Decel 3: DC Brake	-
30123/40123	Decel Begin Level	100 – 1	%
30124/40124	Decel End Level	99 – 1	%
30125/40125	Decel Time	1 – 180	Sec
30126/40126	DC Brake Level	10 – 100	%
30127/40127	DC Brake Time	1 – 180	Sec
30128/40128	DC Brake Delay	1 - 30	100 mSec
30129/40129	Kick Enable 1	0: Disabled 1: Enabled	_
30130/40130	Kick Current Level 1	100 – 800	% FLA
30131/40131	Kick Time 1	1 – 100	100 mSec
30132/40132	Kick Enable 2	0: Disabled 1: Enabled	-
30133/40133	Kick Current Level 2	100 - 800	% FLA
30134/40134	Kick Time 2	1 – 100	100 mSec
30135/40135	Slow Speed Enable	0: Disabled 1: Enabled	_

Absolute Register Address	Description	Range	Units
30136/40136	Slow Speed	0: 1.0 1: 1.5 2: 1.6 3: 1.7 4: 1.9 5: 2.0 6: 2.5 7: 2.6 8: 2.8 9: 2.9 10: 3.1 11: 3.3 12: 3.5 13: 3.8 14: 4.2 15: 4.5 16: 5.0 17: 5.5 18: 6.2 19: 7.1 20: 8.3 21: 9.1 22: 10.0 23: 11.1 24: 12.5 25: 14.3 26: 16.7 27: 20.0 28: 25.0 29: 33.3 30: 37.5 31: 40.0	%
30137/40137	Slow Speed Current Level	10 – 400	% FLA
30138/40138	Slow Speed Time Limit Enable	0: Disabled 1: Enabled	-
30139/40139	Slow Speed Time Limit	1 – 900	Sec
30140/40140	Slow Speed Kick Enable	0: Disabled 1: Enabled	_
30141/40141	Slow Speed Kick Level	100 – 800	% FLA
30142/40142	Slow Speed Kick Time	1 - 100	100 mSec

Absolute Register Address	Description	Range	Units
30143/40143	Rated RMS Voltage	0: 100 1: 110 2: 120 3: 200 4: 208 5: 220 6: 230 7: 240 8: 350 9: 380 10: 400 11: 415 12: 440 13: 460 14: 480 15: 500 16: 525 17: 575 18: 600 19: 660 20: 690 21: 800 22: 1000 23: 1140 24: 2200 25: 2300 26: 2400 27: 3300 28: 4160 29: 4600 30: 4800 31: 6000 32: 6600 33: 6900 34: 10000 35: 11000 36: 11500 37: 12000 38: 12470 39: 13200 40: 13800	Vrms
30144/40144	Input Phase Sensitivity	0: Ins 1: ABC 2: CBA 3: SPH	-
30145/40145	Motor Rated Power Factor	1 – 100	_
30146/40146	Overcurrent Enable	0: Disabled 1: Enabled	_
30147/40147	Overcurrent Level	50 – 800	% FLA
30148/40148	Overcurrent Delay Time Enable	0: Disabled 1: Enabled	-
30149/40149	Overcurrent Delay Time	1 – 900	100 mSec
30150/40150	Undercurrent Trip Enable	0: Disabled 1: Enabled	-
30151/40151	Undercurrent Trip Level	5 – 100	% FLA
30152/40152	Undercurrent Trip Delay Time Enable	0: Disabled 1: Enabled	-
30153/40153	Undercurrent Trip Delay Time	1 – 900	100 mSec
30154/40154	Current Imbalance Trip Enable	0: Disabled 1: Enabled	
30155/40155	Current Imbalance Trip Level	5 – 40	%

Absolute Register Address	Description	Range	Units
30156/40156	Residual Ground Fault Trip Enable	0: Disabled 1: Enabled	_
30157/40157	Residual Ground Fault Trip Level	5 – 100	% FLA
30158/40158	Over Voltage Trip Enable	0: Disabled 1: Enabled	_
30159/40159	Over Voltage Trip Level	1 - 40	%
30160/40160	Under Voltage Trip Enable	0: Disabled 1: Enabled	-
30161/40161	Under Voltage Trip Level	1 - 40	%
30162/40162	Over/Under Voltage Delay Time	1 – 900	100 mSec
30163/40163	Digital Input Trip Delay Time	1 – 900	100 mSec
30164/40164	Auto Fault Reset Enable	0: Disabled 1: Enabled	-
30165/40165	Auto Fault Reset Delay Time	1 – 900	Sec
30166/40166	Auto Fault Reset Count Enable	0: Disabled 1: Enabled	-
30167/40167	Auto Fault Reset Count	1 - 10	_
30168/40168	Controlled Fault Stop	0: Disabled 1: Enabled	-
30169/40169	DI 1 Configuration	0: Off 1: Stop	
30170/40170	DI 2 Configuration DI 3 Configuration	1: Stop 2: Fault High 3: Fault Low 4: Fault Reset 5: Disconnect 6: Inline Feedback (F49) 7: Bypass / 2M Feedback (F48) 8: Emergency Motor OL Reset 9: Local / Remote Control Source 10: Heat Disable 11: Heat Enable 12: Ramp Select 13: Slow Speed Forward 14: Slow Speed Reverse 15: DC Brake Disable 16: DC Brake Enable 17: Speed Switch Normally Open 18: Speed Switch Normally Closed	-
30172/40172	R1 Configuration	0: Off	
30173/40173	R2 Configuration R3 Configuration	1: Fault Fail Safe 2: Fault Non Fail Safe 3: Running 4: Up To Speed 5: Alarm 6: Ready 7: Locked Out 8: Over Current Alarm 9: Under Current Alarm 10: Overload Alarm 11: Shunt Trip Fail Safe 12: Shunt Trip Fail Safe 13: Faulted on Ground Fault 14: In Energy Saver Mode 15: Heating 16: Slow Speed 17: Slow Speed Forward 18: Slow Speed Reverse 19: DC Braking 20: Cooling Fan 21: PORT 22: Tach Loss	_
30175/40175	Analog Input Trip Enable	0: Disabled 1: Enabled	-

Absolute Register Address	Description	Range	Units
30176/40176	Analog Input Trip Type	 0: Low – Fault below preset level 1: High – Fault above preset level 	_
30177/40177	Analog Input Trip Level	0 – 100	%
30178/40178	Analog Input Trip Delay Time	1 – 900	100 mSec
30179/40179	Analog Input Span	1 - 100	%
30180/40180	Analog Input Offset	0 – 99	%
30181/40181	Analog Output Function	0: Off (no output) 1: 0 - 200% Current 2: 0 - 800% Current 3: 0 - 150% Voltage 4: 0 - 150% Overload 5: 0 - 10kW 6: 0 - 100kW 7: 0 - 1MW 8: 0 - 10MW 9: 1 - 100% Analog Input 10: 0 - 100% Firing 11: Calibration (full output)	-
30182/40182	Analog Output Span	1 – 125	%
30183/40183	Analog Output Offset	0 – 99	%
30184/40184	Inline Enable	0: Disabled 1: Enabled	_
30185/40185	Inline Delay Time	10 - 100	100 mSec
30186/40186	Bypass Feedback Time	1 – 50	100 mSec
30187/40187	Keypad Stop	0: Disabled 1: Enabled	_
30188/40188	Modbus Timeout Enable	0: Disabled 1: Enabled	_
30189/40189	Modbus Timeout	1 – 120	Sec
30190/40190	CT Ratio	0: 72:1 1: 96:1 2: 144:1 3: 288:1 4: 864:1 5: 2640:1 6: 3900:1 7 5760:1 8: 8000:1 9: 14400:1 10: 28800:1 11: 50:5 12: 150:5 13: 250:5 14: 800:5 15: 2000:5 16: 5000:5 0: Disabled	-
30191/40191	Auto Start	Start after power applied Start after fault reset Starter after power applied and after fault reset	-
30192/40192	Energy Saver Enable	0: Disabled 1: Enabled	_
30193/40193	Heater / Anti-Windmill Enable	0: Disabled 1: Enabled	_
30194/40194	Heater / Anti-Windmill Level	1 - 40	% FLA
30195/40195	Starter Type	0: Normal (Outside Delta) 1: Inside Delta 2: Wye-Delta 3: Phase Controller 4: Current Follower 5: Across the Line (Full Voltage)	_

Absolute Register Address	Description	Range	Units
30196/40196	LED Display Meter	0: Status 1: Ave Current 2: L1 Current 3: L2 Current 4: L3 Current 5: Current Imbalance % 6: Residual Ground Fault 7: Ave. Volts 8: L1-L2 Volts 9: L2-L3 Volts 10: L3-L1 Volts 11: Overload 12: Power Factor 13: Watts 14: VA 15: vars 16: kW hours 17: MW hours 18: Phase Order 19: Line Frequency 20: Analog Input 21: Analog Output 22: Running Days 23: Running Hours 24: Starts 25: TruTorque % 26: Power % 27: Peak Starting Current 28: Last Starting Duration 29: Zero Sequence Ground Current 30: Hottest Stator RTD Temperature 31: Hottest RTD Temperature 32: Hottest Other RTD Temperature 33: Hottest RTD Temperature	-
30197/40197	LCD Display Meter 1 LCD Display Meter 2	1: Ave Current 2: L1 Current 3: L2 Current 4: L3 Current 5: Current Imbalance % 6: Residual Ground Current 7: Ave. Volts 8: L1-L2 Volts 9: L2-L3 Volts 10: L3-L1 Volts 11: Overload 12: Power Factor 13: Watts 14: VA 15: vars 16: kW hours 17: MW hours 18: Phase Order 19: Line Frequency 20: Analog Input 21: Analog Output 22: Running Days 23: Running Hours 24: Starts 25: TruTorque % 26: Power % 27: Peak Starting Current 28: Last Starting Duration 29: Zero Sequence Ground Current 30: Stator RTD Temperature 31: Bearing RTD Temperature 32: Other RTD Temperature 33: Hottest RTD Temperature	_

Absolute Register Address	Description	Range	Units
30199/40199	Misc. Commands	0: None 1: Reset Run Time 2: Reset kWh 3: Enter Reflash Mode 4: Store Parameters 5: Load Parameters 6: Factory Reset 7: Standard BIST 8: Powered BIST	-
30221/40221	Acceleration Profile	0: Linear	_
30222/40222	Deceleration Profile	1: Squared 2: S-Curve	_
30223/40223	PORT Bypass Enable	0: Disabled 1: Enabled	-
30224/40224	PORT Bypass Delay Time	1 – 50	100 mSec
30225/40225	PORT Recovery Method	0: Voltage Ramp 1: Fast Recover 2: Current Ramp 3: Current Ramp 2 4: Ramp Select 5: Tach Ramp	_
30226/40226	Tachometer Full Speed Voltage	100 – 1000	10 mV
30227/40227	Tachometer Loss Delay Time	1 – 900	100 mSec
30228/40228	Tachometer Loss Action	0: Fault 1: Closed Loop Current Ramp 2: TruTorque Ramp 3: Power Ramp	-
30229/40229	Time/Date Format	0: MM/DD/YY, 12 Hour 1: MM/DD/YY, 24 Hour 2: YY/MM/DD, 12 Hour 3: YY/MM/DD, 24 Hour 4: DD/MM/YY, 12 Hour 5: DD/MM/YY, 24 Hour	-
30230/40230	Current Imbalance Delay Time	1 – 900	100 mSec
30231/40231	Zero Sequence Ground Fault Trip Enable	0: Disabled 1: Enabled	_
30232/40232	Zero Sequence Ground Fault Trip Level	10 - 250	100 mArms
30233/40233	Ground Fault Delay Time	1 – 900	100 mSec
30234/40234	Phase Loss Delay Time	1 - 50	100 mSec
30235/40235	Over Frequency Trip Level	24 – 72	Hz
30236/40236	Under Frequency Trip Level	23 – 71	Hz
30237/40237	Over/Under Frequency Delay Time	1 – 900	100 mSec
30238/40238	Power Factor Leading Trip Enable	0: Disabled 1: Enabled	_
30239/40239	Power Factor Leading Trip Level	80 – 99 =-0.80 to -0.99 lag 100 – 120 =-1.00 to +0.80 lead	_
30240/40240	Power Factor Lagging Trip Enable	0: Disabled 1: Enabled	_
30241/40241	Power Factor Lagging Trip Level	1 - 99 = -0.01 to -0.99 lag 100 - 120 = 1.00 to $+0.80$ lead	_
30242/40242	Power Factor Delay Time	1 – 900	100 mSec
30243/40243	Backspin Timer Enable	0: Disabled 1: Enabled	-
30244/40244	Backspin Time	1 – 180	Min
30245/40245	Time Between Starts Enable	0: Disabled 1: Enabled	_
30246/40246	Time Between Starts	1 – 180	Min
30247/40247	Starts per Hour Enable	0: Disabled 1: Enabled	-
30248/40248	Starts per Hour	1 – 6	_
30249/40249	Speed Switch Enable	0: Disabled 1: Enabled	_

Absolute Register Address	Description	Range	Units
30250/40250	Speed Switch Delay Time	1 – 250	Sec
30251/40251	Motor PTC Enable	0: Disabled 1: Enabled	_
30252/40252	Motor PTC Delay Time	1 – 5	Sec
30253/40253	PORT Trip Enable	0: Disabled 1: Enabled	-
30254/40254	PORT Trip Delay Time	1 – 900	100 mSec
30255/40255	Motor Overload Alarm Level	1 – 100	%
30256/40256	Motor Overload Lockout Level	1 – 99	%
30257/40257	Motor Overload Auto Lockout Calculation	0: Disabled 1: Enabled	-
30258/40258	Motor Overload RTD Biasing Enable	0: Disabled 1: Enabled	-
30259/40259	Motor Overload RTD Biasing Min	0 – 198	°C
30260/40260	Motor Overload RTD Biasing Mid	1 – 199	°C
30261/40261	Motor Overload RTD Biasing Max	105 – 200	°C
30262/40262	DI4 Configuration		
30263/40263	DI5 Configuration	1	
30264/40264	DI6 Configuration	Same as DI 1 through DI 3 configuration	_
30265/40265	DI7 Configuration	in register 30169/40169	
30266/40266	DI8 Configuration	1	
30267/40267	R4 Configuration		
30268/40268	R5 Configuration	Same as R1 through R3 configuration in	_
30269/40269	R6 Configuration	register 30172/40172	
30270/40270	RTD Module 1 Enable	0: Disabled 1: Enabled	_
30271/40271	RTD Module 1 Address	16 – 23	_
30272/40272	RTD Module 2 Enable	0: Disabled 1: Enabled	_
30273/40273	RTD Module 2 Address	16 – 23	_
30274/40274	RTD 1 Group	10 23	
30275/40275	RTD 2 Group	1	
30275/40275	1	1	
	RTD 3 Group	1	
30277/40277	RTD 4 Group	-	
30278/40278	RTD 5 Group	-	
30279/40279	RTD 6 Group	-	
30280/40280	RTD 7 Group	0: Off	
30281/40281	RTD 8 Group	1: Stator	_
30282/40282	RTD 9 Group	2: Bearing 3: Other	
30283/40283	RTD 10 Group		
30284/40284	RTD 11 Group	1	
30285/40285	RTD 12 Group	1	
30286/40286	RTD 13 Group	1	
30287/40287	RTD 14 Group	1	
30288/40288	RTD 15 Group]	
30289/40289	RTD 16 Group		
30290/40290	RTD Stator Alarm Level		
30291/40291	RTD Bearing Alarm Level		
30292/40292	RTD Other Alarm Level	1 200)°C
30293/40293	RTD Stator Alarm Level	1-200	°C
30294/40294	RTD Bearing Trip Level	1	
30295/40295	RTD Other Trip Level	1	
	•	0: Disabled	
30296/40296	RTD Voting Enable	1: Enabled	_

Absolute Register Address	Description	Range	Units
30601/40601	Fault Code (newest fault)	D. C. (193	
to 30609/40609	to Fault Code (oldest fault)	Refer to page 183	_
30611/40611 to 30619/40619	System States: The state that the starter was in when the fault has occurred.	0: Initializing 1: Locked Out 2: Faulted 3: Stopped 4: Heating 5: Kicking 6: Ramping 7: Slow Speed 8: Not UTS 9: UTS (up to speed) 10: Phase Control / Current Follower 11: Decelling 12: Braking 13: Wye 14: PORT 15: BIST 16: Shorted SCR Test 17: Open SCR Test	-
30621/40621 to 30629/40629	L1 Currents: The current that the load is drawing from Line 1 when the fault has occurred.		Arms
30631/40631 to 30639/40639	L2 Currents: The current that the load is drawing from Line 2 when a fault occurs.		Arms
30641.40649 to 30649/40649	L3 Currents: The current that the load is drawing from Line 3 when a fault occurs.		Arms
30651/40651 to 30659/40659	L1 – L2 Voltages: The line voltage that is present between lines 1 and 2 when a fault occurs.		Vrms
30661/40661 to 30669/40669	L2 – L3 Voltages: The line voltage that is present between lines 2 and 3 when a fault occurs.		Vrms
30671/40671 to 30679/40679	L3 – L1 Voltages: The line voltage that is present between lines 3 and 1 when a fault occurs.		Vrms
30681/40681 to 30689/40689	Kilowatts: The power that the load is drawing when a fault occurs.		KW
30691/40691 to 30699/40699	Line Periods: The line period (1/frequency) that is present when a fault occurs.	_	microseconds
30701/40701 to 30709/40709	Run Time Hours: The value of the running time meter when a fault occurs.		Hours
30711/40711 to 30719/40719	Run Time Counts: The value of the running time meter when a fault occurs. The running counts provides more resolution than the running time hours.	resets to 0 each time the running time hours increments (at 35 999)	10 counts/sec
30801/40801 (newest) to 30899/40899 (oldest)	Event Codes: Bit 15 indicates whether a record is an event or fault. A 1 indicates fault and a 0 indicates an event. The remaining 15 bits contain the code.	refer to page 180	
30901/40901 (newest) to 30999/40999 (oldest)	The system state when the event or fault occurred may be read.	refer to address 30611 - 30619	
31001/41001 to 31198/41198	Time and Date Stamp	2 registers= 32 bit unsigned integer / event. seconds since 01/01/1972 - 01/01/2107	

Starter Control Register:

0: Stop 1: Start
0: No action 1: Fault Reset
0: No action 1: Emergency Overload Reset
0: Local 1: Remote
0: Heater Enabled 1: Heater Disabled
0: Ramp 1 1: Ramp 2
0: Energize(d) 1: De-energize(d)
Same as above

The control source must be serial for the starter to be started through Modbus. The Run/Stop bit must transition from 0 to 1 for a start to occur. If the starter stops due to a fault, the action of the starter depends on the state of the Auto Start parameter (I/O 27).

The fault reset bit must transition from 0 to 1 for a fault to be reset.

If any of the programmed digital inputs are programmed as Local/Remote inputs, then the local/Remote bit has no effect.

When the relays are programmed as "Off", the relay bits may be written in order to control the relays. When the relays are programmed for any function other than "Off" (Fault, Run, UTS for example), then the relay bits may be read to determine the state of the relays.

Starter Status Register:

Starter Status Register.	
Bit 0 – Ready	0: Initializing or Faulted and decelerating or Faulted and Braking or Faulted and Stopped or Lockout 1: Otherwise
Bit 1 – Running	0: Not Running 1: Running
Bit 2 –UTS	0: Not UTS 1: UTS
Bit 3 –Alarm	No alarm conditions or more alarm conditions
Bit 4 –Fault	0: No Fault Condition 1: Fault Condition
Bit 5 –Lockout	Start or Fault Reset not locked out. Start or Fault Reset locked out. Possible causes are: Overload Lockout State

Watts, VA, vars, and kW hour Registers:
Meter registers present 32 bit meters in two consecutive 16 bit registers. The least significant 16 bits are in the first register followed by the most significant 16 bits in the second register.

Reading the least significant register latches data into the most significant register so that the data remains synchronized between the

Parameter Registers:For those parameters that can be set either to "Off", or some value within a range (many of the protection parameters, for example) there are two Modbus registers. One is an "enable" register, and the other sets the value within the range.

APPENDIX G - APPLICATION GLOSSARY

Glossary

A

AC Alternating Current

Ambient Temperature Is the temperature of the air, water or a surrounding medium where equipment is operated or stored.

American Wire Gauge

A standard system used for designing the size of electrical conductors. Gauge numbers have an inverse relationship to size; larger numbers have a smaller cross-sectional area. However, a single strand

conductor has a larger cross sectional area than a multi strand conductor of the same gauge so that they

have the same current carrying specification.

Auto Synchronizing Auto Synchronizing of the gate timing pulses matches each phase firing angle to their respective

phases. The soft start actively tracks minor shifts in the line frequency, avoiding nuisance tripping that

may happen with conventional gate firing systems.

В

Buffer - In software terms, a register or group of register used for temporary storage of data to compensate for

transmission rate differences between the transmitter and receiving device.

- In hardware terms, an isolating circuit used to avoid the reaction of one circuit with another.

C

Contactor, Reversing A method of reversing motor rotation by the use of two separate contactors, one of which produces

rotation in on direction and the other produces rotation in the opposite direction. The contactors are electrically (and mechanically) interlocked so that both cannot be energized at the same time.

CPU Board This is where the microprocessor. The CPU Board is attached to the main power, and communicates to it and the keypad operator interface via ribbon cables. The CPU determines operating functions, stores

it and the keypad operator interface via ribbon cables. The CPU determines operating functions, stores user programming and acts on feedback signals for faults, metering and historical data. This board also

contains the flash EEPROM and SRAM memory.

Cursor The intensified or blinking element in a video display. A means for indication where data entry or

editing occurs.

Cycle - A sequence of operations that is repeated regularly

- The time it take for one sequence of operations to occur.

D

DeviceNet A producer / consumer based, high speed multi-node network.

Disable To inhibit logic from being activated.

Duty Cycle The relationship between the operation and rest time or repeatable operation at different loads.

DV/DT The DV/DT boards are used to reduce voltage transients across the stack assemblies.

 \mathbf{E}

Enable To allow an action or acceptance of data by applying an appropriate signal to the appropriate input.

F

Fault Any malfunction that interferes with normal system operation.

G

Gate The control element of an SCR (silicon controlled rectifier) commonly referred to as a thyristor. When

a small positive voltage is applied to the gate momentarily, the SCR will conduct current (when the anode is positive with respect to the cathode of the SCR). Current conduction will continue even after

the gate signal is removed.

Gate Drive Boards

Are located directly on the SCR stacks. These boards communicate to the main power board via fiber ontic cookies. They amplify the gate pulse signals with power from the ring transformer to create two

optic cables. They amplify the gate pulse signals with power from the ring transformer to create two sustained pulse firing of the SCRs. There is one gate drive board for each pair of SCRs in each stack.

sustained pulse firing of the SCRs. There is one gate drive board for each pair of SCRs in each stace H

I

APPENDIX G - APPLICATION GLOSSARY

Interface Board This circuit board take line-side and load-side voltage feedback signals from the voltage feedback

board and passes them via pin cables to the processor.

Is a means of accomplishing momentary motor movement by repetitive closure of a circuit using a Jogging

single push button or contact element.

Jumper A short conductor with which you connect two parts.

Keypad Is a 2 line x 16 character LCD display with backlighting for low ambient conditions. The display reads

out in truncated english and can show multiple data points in each screen.

LCD Liquid crystal display, which is a reflective visual readout device commonly used in digital watches

and laptop computers.

Locked Rotor Torque The minimum torque that a motor will develop at rest for all angular positions of the rotor with rated

voltage applied at rated frequency.

Low Voltage Low Voltage electronics include the keypad operator interface, CPU, main power PC board and are

located in isolated low voltage compartments of the enclosure.

This is also referred to as the firing board. It contains the digital I/O relays and interfaces to the terminal for user interface. See "terminal and control". It also controls the sequencing of the isolation Main Power Board

and bypass contactors with the SCR firing. This board generates all firing signals for the SCR stacks and receives feedback signals from the fiber optic transmitters. It converts analog levels to digital signals for the CPU. These firing pulses are via fiber optic signals to isolate them from the medium

voltage environment.

Medium Voltage Control electronics are located in the medium voltage section of the soft start. The main line power

must be disconnected before accessing these electronics, which include the TCB (terminal and control

board), gate drive, and temp/CT(current transformer) board.

ModBUS A registered based, multi-point network

Mode A selected method of operation. For example; run

Normally Closed Contacts A set of contacts on a relay or switch that are closed when the relay is de-energized or the switch is

de-activated. They are open when the relay is energized or the switch is activated

Normally Open Contacts A set of contacts on a relay or switch that are open when the relay is de-energized or the switch is

de-activated. They are closed when the relay is energized or the switch is activated.

Port Power outage ride-through

A measurement of the time phase difference between the voltage and current in an AC circuit. It is represented by the cosine of the angle of this phase difference. Power factor is the ratio of Real Power Power Factor

(kW) to total kVA or the ratio of actual power (W) to apparent power (volt-amperes).

Preset Speed Refers to one or more speeds at which the drive will operate.

Programmable Controller A solid state system that has user-programmable memory for storage of instructions to implement

specific functions such as I/O control, logic, timing, counting, report generation, communication, arithmetic, and data file manipulation. A controller consists of a central processor, input/output

interface, and memory. A controller is designed as an industrial control system.

Protocol A set of conventional governing the format and timing of data between communication devices.

Q

R

Ramp Is the charted path that the torque, current, power, follows will achieving maximum torque.

Is the time it takes for the torque to go from the initial torque, current, power setting to the maximum Ramp Time

torque, current, power setting.

APPENDIX G - APPLICATION GLOSSARY

Remote I/O I/O connected to a processor across a serial link. With a serial link, remote I/O can be located long

distances from the processor.

An EIA standard that specifies electrical, mechanical and functional characteristics for serial binary RS-232-C

communication circuits in a point-to-point link.

RS-422 An EIA standard that specifies electrical characteristics of balanced-voltage digital interface circuits in

a point-to-point link.

RS-485 An EIA standard that specifies electrical characteristics of balanced-voltage digital interface circuits in

a multi-point link.

RTD Resistance Temperature Detector- is a temperature measurement device, used by passing a low-level

current through the RTD and measuring the voltage drop.

Scrolling The vertical movement of data on a display screen caused by the dropping of one line of display data

for each new line added at the opposite end.

Serial Pertaining to time sequential transmission of, storage of, or logic operations on data, using the same

facilities for successive parts.

Service Factors When used on a motor nameplate, a number which indicates how much above the nameplate rating a

motor can be loaded with out causing serious degradation (i.e., a motor with 1.15 S-F can produce 15% greater torque than one with 1.0 S-F) to adjust measured loads in an attempt to compensate for

conditions which are difficult to measure or define.

SCR Gate Firing Circuit The soft start contains a firing circuit that includes several unique features that maximize performance

without the need for reactors or field installed devices used in other systems, regardless of conditions. These features include; Auto Synchronizing, sustained pulse firing, closed loop firing control,

transformer isolation and fiber optic isolation.

A solid state switch, sometimes referred to as a thyristor. The SCR has an anode, cathode and control element called the gate. The device provides controlled rectification since it can be turned on at will. the SCR can rapidly switch large currents at high voltage. Silicon Controlled Rectifier (SCR)

Status The condition at a particular time of any numerous entities within a system. These conditions may be

represented by values in a status line.

The process of absorbing and clipping voltage transients on an incoming AC line or control circuit. Surge Protection

MOVs (Metal Oxide Varistors) and specially designed R-C networks are usually used to accomplish

Sustained Pulse Firing Keeps the firing signal active for 270 electrical degrees, ensuring that the DC gate pulse causes the

SCR to fire even if line noise is present at a critical moment, this provides noise immunity and protects

against misfiring, enhancing system reliability.

Terminal and Control Board This is the user connection interface board. It is located in the medium voltage section in order to

satisfy UL termination requirements but does not actually connect directly to the medium voltage components other than the contactor coils. This board contains the user terminal blocks, out relays (duplicated), inputs, and control power connections. It also contain additional timed relays for

interfacing with power factor correction contactors (if used) and other external devices.

Toggle To switch alternately between two possible selections

Transformer Isolation

Prevents the interference from line noise and EMI/RFI signals that may be present. Specially designed 120 V, 3-phase isolation transformers provide potential measurement, firing board power, and gate power systems while isolated from the line voltage. High isolation ring transformers are used to reduce the voltage down to 28 Vac for the sustained pulse firing circuit, providing further isolation for the SCR gates. Additional magnetic isolation is provided via a separate control power transformer (CPT), which powers the low voltage controls and the CPU.

Transient A momentary deviation in an electrical or mechanical system.

U

cUL Canadian Underwriters Laboratories (an approval agency)

3-Year Warranty

Date of Startup; Benshaw Model #: USER INFORMA' Company Name:				1 400			
USER INFORMA				Date of pur			
				Benshaw Se	erial #:		
	TION (OWNER):					
Address:							
Contact:			Phone:	9	F	ax:	
Purchased from (Di	stributor):						
MOTOR INFORM	IATION:						
	Std. Induction	☐ Wound I	Rotor [Synchronous	Other		
Make:				mous Motors		Vound rotor motors	
HP:	SF:		Field V	oltage:	- 8	econdary Volts:	
VOLTS:	LRA:		Field A	The same of the sa		econdary Amps:	
FLA:	NEMA Desig	gn:	Field R	esistor:	8	econdary Resistance:	
RPM:	Frame:						
FREQ:	KVA Code:		-				
LOAD INFORMA	TION:						
Type of driven load					- 55 - 171	- 25 - 21 0 20	-
MFG. of driven equ				Mo	del #:	Serial	#:
POWER SYSTEM	LINEODMATIC	N.					
Utility Power	Transformer l		kVA	Generato	r Gov	erator Rating k	W
Power cable run fro		11001100100		proximate or		iciatot RatingK	**
Power Factor Ca	ips/Surge Caps/L		tors moved	to line side of sol	id-state start	er or removed.	
DANGER			or personal		if equipmen	t is started with lightning	arrestors, power
DANGER factor cape STARTUP PROC	ecitors or surge ca EDURES (All pr	apacitors conn rocedures are	or personal ected on the found in y	injury may result e load side of the s our instruction n	if equipmen solid-state m nanual):	t is started with lightning otor controls.	
factor cape STARTUP PROC	EDURES (All predures followed	rocedures are	or personal ected on the found in year Connection	injury may result e load side of the s our instruction n procedures follow	if equipmen solid-state m nanual): ved	t is started with lightning otor controls. Startup procedures	
DANGER factor cape STARTUP PROC Pre-startup proc Proper cable size	EDURES (All predures followed	rocedures are	or personal ected on the found in year Connection	injury may result e load side of the s our instruction n procedures follow tions tight (Power	if equipmen solid-state m nanual): wed r & Control)	t is started with lightning otor controls. Startup procedures	
DANGER factor cape STARTUP PROC Pre-startup proc Proper cable size Name of person cor	EDURES (All predures followed enpleting this repo	rocedures are	or personal ected on the found in y Connection All Connec	injury may result e load side of the s our instruction n procedures follow	if equipmen solid-state m nanual): wed r & Control)	t is started with lightning otor controls. Startup procedures	
DANGER factor cape STARTUP PROC Pre-startup proc Proper cable size Name of person cor WARRANTY STA	EDURES (All predures followed enpleting this repo	rocedures are	or personal ected on the found in y Connection All Connec se Only):	injury may result e load side of the s our instruction n procedures follow tions tight (Power	if equipmen solid-state m nanual): wed r & Control)	t is started with lightning otor controls. Startup procedures	
DANGER factor cape STARTUP PROC Pre-startup proc Proper cable size Name of person cor WARRANTY STA	EDURES (All predures followed enpleting this repo	rocedures are	or personal ected on the found in y Connection All Connec se Only):	injury may result e load side of the s our instruction n procedures follow tions tight (Power	if equipmen solid-state m nanual): wed r & Control)	t is started with lightning otor controls. Startup procedures	
DANGER factor cape STARTUP PROC	EDURES (All predures followed enpleting this repo	rocedures are	or personal ected on the found in y Connection All Connec se Only):	injury may result e load side of the s our instruction n procedures follow tions tight (Power	if equipmen solid-state m nanual): wed r & Control)	t is started with lightning otor controls. Startup procedures	

204

General Conditions

All warranties are provided in accordance with Benshaw, Inc. Terms and Conditions of Sale. Benshaw warrants it's products including printed circuit boards, power electronic assemblies and integral bypass contactors per the periods and warranty types listed below. Other manufacturer's products which are included in the Benshaw equipment such as circuit breakers, fuses, transformers, relays, pilot devices and other power/control components are warranted per the terms and conditions of the manufacturer's original equipment warranty. All warranty periods for Benshaw manufactured products are based on the date of shipment unless otherwise specified.

Solid State Re	educed Voltage Products	Warranty Period	Warranty Type	Warranty Registration
RC2	Non Reversing	3 Years *	Factory Repair or Exchange	Data Sheet
RC3	Non Reversing	3 Years *	Factory Repair or Exchange	Data Sheet
RCM	Non Reversing	3 Years *	Factory Repair or Exchange	Data Sheet
RB2	Non Reversing with Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
RB3	Non Reversing with Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
RBX	Non Reversing with Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
RBM	Non Reversing with Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
RSM10	Reversing Starter	3 Years *	Factory Repair or Exchange	Data Sheet
RSM10B	Reversing / Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
RSM11	Reversing / DC Brake	3 Years *	Factory Repair or Exchange	Data Sheet
RSM11B	Reversing / Brake / Bypass	3 Years *	Factory Repair or Exchange	Data Sheet
MVRSM	Medium Voltage-All Types	3 Years	Active On Site	Startup Service
MVRMX	Medium Voltage-All Types	3 Years	Active On Site	Startup Service
WRSM6	Wound Rotor Starter	3 Years *	Factory Repair or Exchange	Data Sheet
SMRSM6B	Synchronous Starter	3 Years *	Factory Repair or Exchange	Data Sheet
Brakes Produ	cts	Warranty Period	Warranty Type	Warranty Registration
DCB3	DC Injection Brake	3 Years	Factory Repair or Exchange	Data Sheet
Full Voltage I	Products	Warranty Period	Warranty Type	Warranty Registration
FVNR	Non Reversing	3 Years *	Factory Repair or Exchange	Data Sheet
FVR	Reversing	3 Years *	Factory Repair or Exchange	Data Sheet
* Motors larger thu	in a T - Frame require a supervised start up	for the 3-year warranty.		

Factory Repair or Exchange:

Benshaw will repair or replace, at its option, all Benshaw manufactured components, which fail within the defined warranty period. Failures, which are caused by unauthorized repairs, mechanical, electrical or physical abuse and acts of God such as lightning, fires or floods, are excluded. The customer pays freight and any required labor costs.

Active On Site Time and Parts:

If Benshaw determines that on site repairs or exchange is necessary, Benshaw or an authorized service agent will perform the necessary work on site. Benshaw will provide the actual service time and required parts to repair the unit. The customer will pay for travel time and living costs to the site and any waiting time to perform the repairs. Failures, which are caused by unauthorized repairs, mechanical, electrical or physical abuse and acts of God such as lightning, fires or floods, are excluded. A purchase order must be issued for the non-warranty travel and living costs prior to the work being performed.

Warranty Registration - Installation Data Sheet:

For low voltage products, the Benshaw warranty registration form must be completed and returned to Benshaw within five (5) days of startup to activate the 3-year warranty. If the data sheet is not completed and returned, the warranty will be 12 months from date of shipment. All recommended maintenance procedures must be followed throughout the warranty period. Motors larger than a T-Frame require a Benshaw authorized representative to start the equipment to activate the 3-year warranty.

Warranty Registration - Benshaw Startup Service:

For Medium Voltage products, Benshaw or an authorized service agent must startup the equipment and complete the installation data sheet to activate the 3-year warranty from date of shipment. If the data sheet is not completed and returned, the warranty will be 12 months from date of shipment. The cost of this service is not included in the price of the Benshaw equipment and will be quoted separately to the customer. All recommended maintenance procedures must be followed throughout the warranty period.

12/18 Month Warranty

These warranties are 12 months from date of startup or 18 months from date of shipment, whichever is sooner.

WN0001-03-3 Year Warranty Data Sheet-Revision Nov 06.doc

Page 2 of 2

Parameter Table

Following is the parameter table for both the LED and LCD Display. The last column is a convenient place to write down parameter settings.

Quick Start Group

LED	LCD	Display	Parameter	Setting Range	Units	Default	Page	Setting
P1	QST 01	Motor FLA	Motor FLA	1 – 6400	RMS Amps	10	58	
P2	QST 02	Motor SF	Motor Service Factor	1.00 – 1.99		1.15	58	
Р3	QST 03	Running OL	Motor Running Overload Class	Off, 1 – 40		10	59	
P4	QST 04	Local Src	Local Source	Keypad			59	
P5	QST 05	Remote Src	Remote Source	Terminal Serial		Terminal	60	
P6	QST 06	Init Cur 1	Initial Motor Current 1	50 - 600	%FLA	100	61	
P7	QST 07	Max Cur 1	Maximum Motor Current 1	100 - 800	%FLA	600	61	
P8	QST 08	Ramp Time 1	Ramp Time 1	0 - 300	Seconds	15	62	
P9	QST 09	UTS Time	UTS Time / Transition Time	1 – 900	Seconds	20	62	

Control Function Group

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
CFN 00		Jump Code	Jump to Parameter	1 to 25		1	63	
CFN 01	P10	Start Mode	Start Mode	Voltage Ramp Current Ramp TT Ramp Power Ramp Tach Ramp		Current Ramp	63	
CFN 02	P8	Ramp Time 1	Ramp Time 1	0 to 300	Seconds	15	64	
CFN 03	P6	Init Cur 1	Initial Motor Current 1	50 to 600	%FLA	100	64	
CFN 04	P7	Max Cur 1	Maximum Motor Current 1	100 to 800	%FLA	600	65	
CFN 05	P24	Ramp Time 2	Ramp Time 2	0 to 300	Seconds	15	65	
CFN 06	P22	Init Cur 2	Initial Motor Current 2	50 to 600	%FLA	100	65	
CFN 07	P23	Max Cur 2	Maximum Motor Current 2	100 to 800	%FLA	600	66	
CFN 08	P11	Init V/T/P	Initial Voltage/Torque/Power	1 to 100	%	25	66	
CFN 09	P12	Max T/P	Maximum Torque/Power	10 to 325	%	105	67	
CFN 10		Accel Prof	Acceleration Ramp Profile	Linear Squared S-Curve		Linear	67	
CFN 11	P13	Kick Lvl 1	Kick Level 1	Off, 100 to 800	%FLA	Off	68	
CFN 12	P14	Kick Time 1	Kick Time 1	0.1 to 10.0	Seconds	1.0	69	
CFN 13	P25	Kick Lvl 2	Kick Level 2	Off, 100 to 800	%FLA	Off	69	
CFN 14	P26	Kick Time 2	Kick Time 2	0.1 to 10.0	Seconds	1.0	69	
CFN 15	P15	Stop Mode	Stop Mode	Coast Volt Decel TT Decel DC Brake		Coast	70	
CFN 16	P16	Decel Begin	Decel Begin Level	100 to 1	%	40	70	
CFN 17	P17	Decel End	Decel End Level	99 to 1	%	20	71	
CFN 18	P18	Decel Time	Decel Time	1 to 180	Seconds	15	71	
CFN 19		Decel Prof	Decel Ramp Profile	Linear Squared S-Curve		Linear	72	
CFN 20	P19	Brake Level	DC Brake Level	10 to 100	%	25	72	
CFN 21	P20	Brake Time	DC Brake Time	1 to 180	Seconds	5	73	

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
CFN 22	P21	Brake Delay	DC Brake Delay	0.1 to 3.0	Seconds	0.2	73	
CFN 23	P27	SSpd Speed	Slow Speed	Off, 1 – 40	%	Off	73	
CFN 24	P28	SSpd Curr	Slow Speed Current Level	10 to 400	% FLA	100	74	
CFN 25	P29	SSpd Timer	Slow Speed Timer	Off, 1 to 900	Seconds	10	74	
CFN 26	P30	SSpd Kick Curr	Slow Speed Kick Level	Off, 100 to 800	% FLA	Off	75	
CFN 27	P31	SSpd Kick T	Slow Speed Kick Time	0.1 to 10.0	Seconds	1.0	75	

Protection Function Group

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
PFN 00		Jump Code	Jump to parameter	1 - 35		1	76	
PFN 01	P32	Over Cur Lvl	Over Current Trip Level	Off, 50 - 800	%FLA	Off	76	
PFN 02	P33	Over Cur Time	Over Current Trip Delay Time	Off, 0.1 - 90.0	Seconds	0.1	76	
PFN 03	P34	Undr Cur Lvl	Under Current Trip Level	Off, 5 - 100	%FLA	Off	77	
PFN 04	P35	Undr Cur Time	Under Current Trip Delay Time	Off, 0.1 - 90.0	Seconds	0.1	77	
PFN 05	P36	Cur Imbl Lvl	Current Imbalance Trip Level	Off, 5 - 40	%	15	78	
PFN 06		Cur Imbl Time	Current Imbalance Trip Time	0.1 - 90	Seconds	10	78	
PFN 07	P37	Resid GF Lvl	Residual Ground Fault Trip Level	Off, 5 - 100	%FLA	Off	79	
PFN 08		ZS GF Lvl	Zero Sequence Ground Fault Trip Level	Off, 1.0 - 25	Amps	Off	80	
PFN 09		Gnd Flt Time	Ground Fault Trip Time	0.1 - 90.0	Seconds	3.0	80	
PFN 10	P38	Over Vlt Lvl	Over Voltage Trip Level	Off, 1 - 40	%	Off	81	
PFN 11	P39	Undr Vlt Lvl	Under Voltage Trip Level	Off, 1 - 40	%	Off	81	
PFN 12	P40	Vlt Trip Time	Over/Under Voltage Trip Delay Time	0.1 - 90.0	Seconds	0.1	81	
PFN 13		Ph Loss Time	Phase Loss Trip Time	0.1 - 5.0	Seconds	0.2	82	
PFN 14		Over Frq Lvl	Over Frequency Trip	24 - 72	Hz	72	82	
PFN 15		Undr Frq Lvl	Under Frequency Trip	23 - 71	Hz	23	82	
PFN 16		Frq Trip Time	Frequency Trip Time	0.1 - 90.0	Seconds	0.1	83	
PFN 17		PF Lead Lvl	PF Lead Trip Level	Off, -0.80 lag to +0.01 lead		Off	83	
PFN 18		PF Lag Lvl	PF Lag Trip Level	Off, -0.01 lag to +0.80 lead		Off	83	
PFN 19		PF Trip Time	PF Trip Time	0.1 - 90.0	Seconds	10.0	83	
PFN 20		Backspin Time	Backspin Timer	Off, 1 - 180	Minutes	Off	84	
PFN 21		Time Btw St	Time Between Starts	Off, 1 - 180	Minutes	Off	84	
PFN 22		Starts/Hour	Starts per Hour	Off, 1 - 6		Off	84	
PFN 23	P41	Auto Reset	Auto Fault Reset Time	Off, 1 - 900	Seconds	Off	84	
PFN 24	P42	Auto Rst Lim	Auto Fault Reset Count Limit	Off, 1 - 10		Off	85	
PFN 25	P43	Ctrl Flt En	Controlled Fault Stop	Off, On		On	85	
PFN 26		Speed Sw Time	Speed Switch Trip Time	Off, 1 - 250	Seconds	Off	85	
PFN 27		M PTC Time	Motor PTC Trip Time	Off, 1 - 5	Seconds	Off	86	
PFN 28	P44	Indep S/R OL	Independent Starting/Running Overload	Off, On		Off	86	
PFN 29	P45	Starting OL	Motor Overload Class Starting	Off, 1 - 40		10	87	
PFN 30		Running OL	Motor Overload Class Running	Off, 1 - 40		10	87	

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
PFN 31	P46	OL H/C Ratio	Motor Overload Hot/Cold Ratio	0 - 99	%	60	88	
PFN 32	P47	OL Cool Time	Motor Overload Cooling Time	1.0 - 999.9	Minutes	30	88	
PFN 33		OL Alarm Lvl	Motor OL Alarm Level	1 - 100	%	90	89	
PFN 34		OL Lock Lvl	Motor OL Lockout Level	1 - 99	%	15	89	
PFN 35		OL Lock Calc	Motor OL Auto Lockout Level	Off, Auto	·	Off	89	·

I/O Group

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
I/O 00		Jump Code	Jump to parameter	1 to 27		1	90	
I/O 01	P48	DI 1 Config	Digital Input #1 Configuration			Stop		
I/O 02	P49	DI 2 Config	Digital Input #2 Configuration			Off		
I/O 03	P50	DI 3 Config	Digital Input #3 Configuration	Off Heat Disable Stop Heat Enable Fault High Ramp Select		Off		
I/O 04		DI 4 Config	Digital Input #4 Configuration	Fault Low Slow Spd Fwd Fault Reset Slow Spd Rev		Off	90	
I/O 05		DI 5 Config	Digital Input #5 Configuration	Disconnect Brake Disable Inline Cnfrm Brake Enable Bypass Cnfrm Speed Sw NO		Off	90	
I/O 06		DI 6 Config	Digital Input #6 Configuration	E OL Reset Speed Sw NC Local/Remote		Off		
I/O 07		DI 7 Config	Digital Input #7 Configuration			Off		
I/O 08		DI 8 Config	Digital Input #8 Configuration			Off		
I/O 09	P51	Dig Trp Time	Digital Fault Input Trip Time	0.1 to 90.0	Seconds	0.1	91	
I/O 10	P52	R1 Config	Relay Output #1Configuration	Off Ground Fault Fault FS Energy Saver		Fault FS		
I/O 11	P53	R2 Config	Relay Output #2 Configuration	Fault NFS Heating Running Slow Spd		Off		
I/O 12	P54	R3 Config	Relay Output #3 Configuration	UTS Slow Spd Fwd Alarm Slow Spd Rev Ready Braking		Off	91	
I/O 13		R4 Config	Relay Output #4 Configuration	Locked Out Cool Fan Ctl Overcurrent PORT		Off	91	
I/O 14		R5 Config	Relay Output #5 Configuration	Undercurrent Tach Loss OL Alarm Shunt FS		Off		
I/O 15		R6 Config	Relay Output #6 Configuration	Shunt PS Shunt NFS		Off		
I/O 16	P55	Ain Trp Type	Analog Input Trip Type	Off Low Level High Level		Off	92	
I/O 17	P56	Ain Trp Lvl	Analog Input Trip Level	0 to 100	%	50	92	
I/O 18	P57	Ain Trp Tim	Analog Input Trip Delay Time	0.1 to 90.0	Seconds	0.1	93	
I/O 19	P58	Ain Span	Analog Input Span	1 to 100	%	100	93	
I/O 20	P59	Ain Offset	Analog Input Offset	0 to 99	%	0	94	

Group	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
I/O 21	P60	Aout Fctn	Analog Output Function	Off 0 - 200% Curr 0 - 800% Curr 0 - 150% Volt 0 - 150% OL 0 - 10 kW 0 - 100 kW 0 - 1 MW 0 - 10 MW 0 - 100% Ain 0 - 100% Firing Calibration		Off	94	
I/O 22	P61	Aout Span	Analog Output Span	1 to 125	%	100	95	
I/O 23	P62	Aout Offset	Analog Output Offset	0 to 99	%	0	95	
I/O 24	P63	Inline Confg	Inline Configuration	Off, 1.0 to 10.0	Seconds	3.0	96	
I/O 25	P64	Bypas Fbk Tim	Bypass / 2M Confirm	0.1 to 5.0	Seconds	2.0	96	
I/O 26	P65	Kpd Stop	Keypad Stop Disable	Enabled, Disabled		Enabled	96	
I/O 27	P66	Auto Start	Power On Start Selection	Disabled Power Fault Power and Fault		Disabled	97	

RTD Group

Group	Display	Parameter	Setting Range	Units	Default	Page	Setting
RTD 00	Jump Code	Jump to Parameter	1 - 29		1	97	
RTD 01	RTD Mod1 Addr	RTD Module #1 Address	Off, 16 - 23		Off	97	
RTD 02	RTD Mod2 Addr	RTD Module #2 Address	O11, 16 - 23		Oli	98	
RTD 03	RTD1 Group	RTD1 Group					
RTD 04	RTD2 Group	RTD2 Group					
RTD 05	RTD3 Group	RTD3 Group					
RTD 06	RTD4 Group	RTD4 Group					
RTD 07	RTD5 Group	RTD5 Group					
RTD 08	RTD6 Group	RTD6 Group					
RTD 09	RTD7 Group	RTD7 Group					
RTD 10	RTD8 Group	RTD8 Group	Off Stator		Off	98	
RTD 11	RTD9 Group	RTD9 Group	Bearing Other		Oli	98	
RTD 12	RTD10 Group	RTD10 Group					
RTD 13	RTD11 Group	RTD11 Group					
RTD 14	RTD12 Group	RTD12 Group					
RTD 15	RTD13 Group	RTD13 Group					
RTD 16	RTD14 Group	RTD14 Group					
RTD 17	RTD15 Group	RTD15 Group					
RTD 18	RTD16 Group	RTD16 Group					

RTD 19	Stator Alrm	Stator Alarm Level			200	98	
RTD 20	Bearing Alrm	Bearing Alarm Level			200	98	
RTD 21	Other Alrm	Other Alarm Level	1 - 200	°C	200	99	
RTD 22	Stator Trip	Stator Trip Level	1 - 200		200	99	
RTD 23	Bearing Trip	Bearing Trip Level			200	99	
RTD 24	Other Trip	Other Trip Level			200	99	
RTD 25	RTD Voting	RTD Voting	Disabled Enabled		Disabled	100	
RTD 26	RTD Biasing	RTD Motor OL Biasing	Off, On		Off	100	
RTD 27	RTD Bias Min	RTD Bias Minimum Level	0 - 198	°C	40	100	
RTD 28	RTD Bias Mid	RTD Bias Mid Point Level	1 - 199	°C	130	101	
RTD 29	RTD Bias Max	RTD Bias Maximum Level	105 - 200	°C	155	101	

Function Group

Number	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
FUN 00		Jump Code	Jump to parameter	1 to 24		1	101	
FUN 01	P71	Meter 1	Meter 1	Ave Current L1 Current L2 Current L3 Current Curr Imbal Ground Fault Ave Volts L1-L2 Volts L2-L3 Volts L3-L1 Volts Overload Power Factor Watts VA		Ave Current		
FUN 02		Meter 2	Meter 2	vars kW hours MW hours Phase Order Line Freq Analog Input Analog Output Run Days Run Hours Starts TruTorque % Power % Pk Accel Cur Last Start T Zero Seq GF Stator Temp Bearing Temp Other Temp All Temp		Ave Volts	101	
FUN 03	P78	CT Ratio	CT Ratio	72:1, 96:1, 144:1, 288:1, 864:1, 1320:1, 2640:1, 2880:1, 3900:1, 5760:1, 8000:1, 14400:1, 28800:1, 50:5, 150:5, 250:5, 800:5, 2000:5, 5000:5		288:1	102	

Number	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
FUN 04	P77	Phase Order	Input Phase Sensitivity	Insensitive ABC CBA Single Phase		Insens.	102	
FUN 05	P76	Rated Volts	Rated RMS Voltage	100, 110, 120, 200, 208, 220, 230, 240, 350, 380, 400, 415, 440, 460, 480, 500, 525, 575, 600, 660, 690, 1000, 1140, 2200, 2300, 2400, 3300, 4160, 4600, 4800, 6000, 6600, 6900, 10000, 11000, 11500, 12000, 12470, 13200, 13800	RMS Voltage	480	103	
FUN 06	P75	Motor PF	Motor Rated Power Factor	-0.01 (Lag) to 1.00 (Unity)		-0.92	103	
FUN 07	P74	Starter Type	Starter Type	Normal Inside Delta Wye-Delta Phase Ctl Curr Follow ATL		Normal	103	
FUN 08	P73	Heater Level	Heater Level	Off, 1 to 40	%FLA	Off	104	
FUN 09	P72	Energy Saver	Energy Saver	Off, On	Seconds	Off	105	
FUN 10		PORT Flt Tim	P.O.R.T. Fault Time	Off, 0.1 - 90.0	Seconds	Off	105	
FUN 11		PORT Byp Tim	P.O.R.T. Bypass Hold Time	Off, 0.1 - 5.0	Seconds	Off	105	
FUN 12		PORT Recover	P.O.R.T. Recovery Method	Voltage Ramp Fast Recover Current Ramp Curr Ramp 2 Ramp Select Tach Ramp		Fast Recover	106	
FUN 13		Tach FS Lvl	Tachometer Full Speed Voltage	1.00 - 10.00	Volts	5.00	106	
FUN 14		Tach Los Tim	Tachometer Loss Time	0.1 - 90.0	Seconds	1.5	106	
FUN 15		Tach Los Act	Tachometer Loss Action	Fault Current TruTorque KW		Fault	106	
FUN 16	P70	Com Drop #	Communication Address	1 to 247		1	107	
FUN 17	P69	Com Baud rate	Communication Baud Rate	1200 2400 4800 9600 19200	bps	19200	107	
FUN 18	P68	Com Timeout	Communication Timeout	Off, 1 to 120	Seconds	Off	107	
FUN 19	P71	Com Parity	Communications Byte Framing	Even, 1 Stop Bit Odd, 1 Stop Bit None, 1 Stop Bit None, 2 Stop Bit		Even, 1 Stop	108	
FUN 20	P80	Software 1	Software Part Number 1	Display Only			108	
FUN 21		Software 2	Software Part Number 2	Display Only			108	
FUN 22	P67	Misc Command	Miscellaneous Commands	None Reset RT Reset kWh Reflash Mode Store Parameters Load Parameters Factory Reset Std BIST Powered BIST		None	108	

Number	LED	Display	Parameter	Setting Range	Units	Default	Page	Setting
FUN 23		T/D Format	Time and Date Format	mm/dd/yy 12h mm/dd/yy 24h yy/mm/dd 12h yy/mm/dd 24h dd/mm/yy 12h dd/mm/yy 24h		mm/dd/yy 12h	109	
FUN 24		Time	Time			Present Time	109	
FUN 25		Date	Date			Present Date	109	
FUN 26		Passcode	Passcode			Off	110	

Fault Group

Group	Fault Number	Fault Description	Starter State	11	12	13	V1	V2	V3	kW	Hz	Run Time
FL1												
FL2												
FL3												
FL4												
FL5												
FL6												
FL7												
FL8												
FL9												

Event Group

Group	Event/Fault #	Event/Fault Description	Condition	Time	Date
E01					
E02					
E_					
E98					
E99					

Revision	Date	ECO#
00	12/15/06	Initial Release

BENSHAW 615 Alpha Drive Pittsburgh, PA 15238 Phone: (412) 968-0100 Fax: (412) 968-5415

BENSHAW Canada 550 Bright Street Listowel, Ontario N4W 3W3 Phone: (519) 291-5112

Phone: (519) 291-5112 Fax: (519) 291-2595